Pacific Journal of Mathematics

Manifolds with positive curvature.

Theodore Frankel

Article information

Source
Pacific J. Math., Volume 11, Number 1 (1961), 165-174.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103037541

Mathematical Reviews number (MathSciNet)
MR0123272

Zentralblatt MATH identifier
0107.39002

Subjects
Primary: 53.80
Secondary: 53.74

Citation

Frankel, Theodore. Manifolds with positive curvature. Pacific J. Math. 11 (1961), no. 1, 165--174. https://projecteuclid.org/euclid.pjm/1103037541


Export citation

References

  • [1] A. Andreotti, On the complex structures of a class of simply connected manifolds,in the Lefschetz symposium volume Algebraic geometry and topology, Princeton, 1957.
  • [2] M. Berger, Les varietes riemanniennes(Ijty-pincees. C. R. Acad. Sci. Paris, 250 (1960), 442-44.
  • [3] H. Hopf, Zur Topologieder komplexen Mannigfaltigkeiten,Studies and Essays presented to R. Courant, New York, (1948), 167-85.
  • [4] S. Kobayashi, Fixed points of isometries, Nagoya Math. J., 13 (1958) 63-68.
  • [5] K. Kodaira, On a differential-geometricmethod in the theory of analytic stacks, Proc. Nat. Acad. Sci. U. S. A., 39 (1953), 1268-73.
  • [6] K. Kodaira,On Kahler varieties of restricted type, Ann. of Math., 60 (1954), 28-48.
  • [7] K. Nomizu, Lie groups and differential geometry, Math, Soc. Japan (1956).
  • [8] H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math., 54 (1951), 38-55.
  • [9] J. L. Synge, The first and second variations of length in Riemannianspace, Proc. London Math. Soc, 25 (1926).
  • [10] J. L. Synge, On the connectivity of spaces of positive curvature, Quart. J. Math. (Oxford series) 7 (1936), 316-20.