Pacific Journal of Mathematics

Exceptional real Lucas sequences.

L. K. Durst

Article information

Source
Pacific J. Math., Volume 11, Number 2 (1961), 489-494.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103037329

Mathematical Reviews number (MathSciNet)
MR0130202

Zentralblatt MATH identifier
0112.26905

Subjects
Primary: 10.07

Citation

Durst, L. K. Exceptional real Lucas sequences. Pacific J. Math. 11 (1961), no. 2, 489--494. https://projecteuclid.org/euclid.pjm/1103037329


Export citation

References

  • [1] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of an -- bn, Ann. of Math.,. (Second Series), 5 (1903-1904), 173-180.
  • [2] R. D. Carmichael, On the numerical factors of the arithmetic forms an pn, Ann. of Math., (Second Series), 15 (1913-1914), 30-70.
  • [3] L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math., 9 (1959), 437-441.
  • [4] D. H. Lehmer, An extended theory of Lucas1 functions, Ann. of Math., (Second Series),, 31 (1930), 419-448.
  • [5] C. G. Lekkerkerker, Prime factors of the elements of certain sequencesof integers, Proc, Koninklijke Nederlandse Akademie van Wetenschappen (Series A), 56 (1953), 265-280.
  • [6] Edouard Lucas, Theorie des fonctions numeriques simplement periodiques, Amer. J.. Math., 1 (1878), 184-240, 289-321.
  • [7] J. J. Sylvester, On the divisors of cyclotomic functions, Amer. J. Math., 2 (1879), 357- 381, Comptes Rendus, 90 (1880), 287-289, 345-347. Collected Mathematical Papers, volume
  • [8] Morgan Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math., (Second Series), 62 (1955), 230-236.