Pacific Journal of Mathematics

Tame Cantor sets in $E^{3}$.

R. H. Bing

Article information

Source
Pacific J. Math., Volume 11, Number 2 (1961), 435-446.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103037324

Mathematical Reviews number (MathSciNet)
MR0130679

Zentralblatt MATH identifier
0111.18606

Subjects
Primary: 54.78

Citation

Bing, R. H. Tame Cantor sets in $E^{3}$. Pacific J. Math. 11 (1961), no. 2, 435--446. https://projecteuclid.org/euclid.pjm/1103037324


Export citation

References

  • [1] Louis Antoine, Sur Vhomeomorphie dedeux figures et de leurs voisanages, J. Math. Pures. Appl., 86 (1921), 221-325.
  • [2] R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math., 56 (1952), 354-362.
  • [3] R. H. Bing, Examples and counter examples, Pi MuEpsilon Journal, 1 (1953), 310-317.
  • [4] R. H. Bing, Approximating surfaces with polyhedral ones, Ann.of Math., 65 (1957),. 456-483.
  • [5] R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann.of Math.,, 69 (1959), 37-65.
  • [6] R. H. Bing, Conditions under which a surface in Ez is tame, Fund. Math., 47 (1959), 105-139.
  • [7] W.A. Blankenship, Generalization of a construction by Antoine, Ann.of Math., 53 (1951), 276-297.
  • [8] W.A. Blankenship andR. H. Fox, Remarks on certain pathological open subsets of 3- space andtheir fundamentalgroups, Proc. Amer. Math. Soc, 1 (1950), 618-624.
  • [9] Karol Borsuk, An example of a simple arcin space whose projection in every plane has interior points, Fund. Math., 34 (1946), 272-277.
  • [10] A. Kirkor, Wild 0-dimensional sets and the fundamentalgroup, Fund. Math.,45- (1958), 228-236.
  • [11] E. E. Moise, Affine structures in 3-manifolds, II. Positional properties of 2-spheres, Ann. of Math., 55 (1952), 172-176.
  • [12] E. E. Moise, Affine structures in 3-manifolds, IV. Piecewise linear approximations of homeomorphism, Ann. of Math., 55 (1952), 215-222.
  • [13] C.D. Papakyriakopoulos, OnDehn's lemma and the asphericityof knots, Ann. of Math., 66 (1957), 1-26.