Pacific Journal of Mathematics

The second conjugate space of a Banach algebra as an algebra.

Paul Civin and Bertram Yood

Article information

Source
Pacific J. Math., Volume 11, Number 3 (1961), 847-870.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103037121

Mathematical Reviews number (MathSciNet)
MR0143056

Zentralblatt MATH identifier
0119.10903

Subjects
Primary: 46.50

Citation

Civin, Paul; Yood, Bertram. The second conjugate space of a Banach algebra as an algebra. Pacific J. Math. 11 (1961), no. 3, 847--870. https://projecteuclid.org/euclid.pjm/1103037121


Export citation

References

  • [1] Richard Arens, Operations induced in function classes, Monat. fur Math., 55 (1951), 1-19.
  • [2] Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc, 2 (1951), 839- 848.
  • [3] M. M. Day, Amenable semigroups, 111. J. of Math., 1 (1957), 509-544.
  • [4] J. Dixmier, Sur un theoreme de Banach, Duke Math. J., 15 (1948), 1057-1071.
  • [5] N. Dunford and J. Schwartz, Linear Operators, Part I. Interscience Publishers, Inc., New York, 1958.
  • [6] I. M. Gelfand, D. A. Raikov and G. E. Silov, Commutative normed rings, Amer. Math. Soc, Translations Series 2 5 (1957), 115-220.
  • [7] L. H. Loomis, An introduction to harmonic analysis, D. Van Nostrand Co., New York, 1953.
  • [8] W. Maak, Fastperiodische Functionen, Springer-Verlag, Berlin, 1950.
  • [9] M. A. Naimark, Normed rings, Moscow (1956). Russian.
  • [10] Walter Rudin, Measure algebras on abelian groups, Bull. Amer. Math. Soc, 65 (1959), 227-247.
  • [11] V. Smulian, On multiplicative functionals in certain special normed rings, C. R. Acad. Sci. URSS (Doklady) 26 (1940), 13-16.
  • [12] Z. Takeda, Conjugate spaces of operator algebras, Proc Jap. Acad., 30 (1954), 90-95.
  • [13] Andre Weil, Uintegation dans les groups topologiques et ses applications, Hermann et Cie, Paris, 1953.