Pacific Journal of Mathematics

Finitistic global dimension for rings.

Horace Mochizuki

Article information

Source
Pacific J. Math., Volume 15, Number 1 (1965), 249-258.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102996006

Mathematical Reviews number (MathSciNet)
MR0178026

Zentralblatt MATH identifier
0154.28603

Subjects
Primary: 16.90

Citation

Mochizuki, Horace. Finitistic global dimension for rings. Pacific J. Math. 15 (1965), no. 1, 249--258. https://projecteuclid.org/euclid.pjm/1102996006


Export citation

References

  • [1] H. Bass, Finitistic dimension and a homologicalgeneralization of semi-primary rings, Trans. Amer. Math. Soc. 90 (I960).
  • [2] H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, 1956.
  • [4] S. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
  • [5] S. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961), 13-25.
  • [6] B. Eckmann and A. Schopf, ber injective moduln, Arch. Math. 4 (1953), 75-78.
  • [7] S. Eilenberg, Homological dimensions and syzygies, Ann. of Math. 64 (1956), 328-336.
  • [8] S. Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras, IV:Dimension of residue rings of hereditary rings, Nagoya Math. J. 10 (1956), 87-95.
  • [9] S. Eilenberg and T. Nakayama, On the dimension of modules and algebras, II: Frobenius algebras and quasi-Frobenius algebras, Nagoya Math. J. 9 (1955), 1-16.
  • [10] S. Eilenberg and T. Nakayama, On the dimension of modules and algebras, V: Dimension of residue rings, Nagoya Math. J. 11 (1957) 9-12.
  • [11] N. Jacobson, Structureof rings, Amer. Soc. Colloquium Publications, 37, Pro- vidence, 1956.