Pacific Journal of Mathematics

On the invariant mean on topological semigroups and on topological groups.

Edmond Granirer

Article information

Source
Pacific J. Math., Volume 15, Number 1 (1965), 107-140.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102995996

Mathematical Reviews number (MathSciNet)
MR0209388

Zentralblatt MATH identifier
0144.38203

Subjects
Primary: 22.10

Citation

Granirer, Edmond. On the invariant mean on topological semigroups and on topological groups. Pacific J. Math. 15 (1965), no. 1, 107--140. https://projecteuclid.org/euclid.pjm/1102995996


Export citation

References

  • [1] A. D. Alexandroff, Additive set functions in abstract spaces (Russian), Math. Sbornic 8 (50) 1940, 307-348; 9 (51) 1941, 563-628; 13 (55) (1943), 169-238.
  • [2] G. Birkoff, Compositio Math. (3) (1936), 424-430.
  • [3] P. Civin-B. Yood, The second conjugate space of a Banach Algebra as an algebra, Pacific J. Math, 11 (1961), 847-870.
  • [4] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
  • [5] M. M. Day, Normed linear spaces, Berlin, Springer, 1958.
  • [6] E. Granirer, On amenable semigroups with a finite dimensional set ofinvariant means I, II, Illinois J. Math. 7 (1963), 32-48 and 49-58.
  • [7] E. Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. (to appear)
  • [8] P. R. Halmos, Measure theory, New York, Van Nostrand (1959).
  • [9] S. Kakutani, ber die Metrisation der topologixhen Gruppen Proc, Imp. Acad. Jap. 12 (1936), 82-84.
  • [10] L. Kelley, General topology, New York, Van Nostrand, 1955.
  • [11] Indar S. Luthar, Uniqueness of the invariant mean on an abelian semigroup, Illinois J. Math. 3 (1959), 28-44.
  • [12] Indar S. Luthar, Uniqueness of the invariant mean on an abelian topological semigroup, Trans Amer. Math. Soc. (1962), 403-411.
  • [13] Chivulkula R. Rao, In variant means on spaces of continuous or measuarable func- tions, thesis submitted to the University of Illinois, Urbana, Illinois.
  • [14] W. G. Rosen, On invariant means over compact semigroups Proc. Amer. Math. Soc. 7 (1956), 1076-1082.
  • [15] W. Rudin, Fourier Analysis on groups, Interscience Publishers, 1962.
  • [16] R. J. Silverman, Invariant linear functions, Trans Amer. Math. Soc. 81 (1956), 411-424.
  • [17] V. S. Varadarajan, Measures on topological spaces (Russian) Math. Sbornic, 55 (97) No. 1 (1961), 35-100.
  • [18] A. Weil, Sur les espaces a structure uniforme at sur la topologic generale, Paris, Herman, Cie 1938.
  • [19] K. Deleew, I. Glicksberg, Applications of almost periodic compactifications, Acta. Math. 105 (1961), 63-97.
  • [20] E. Lyapin, Semigroups(Russian), Moskow, 1960.
  • [21] R. Ellis, Locally compact transformationgroups, Duke Math. J. 24 (1957), 119-120.
  • [22] E. Hewitt, On two problems of Urisohn, Ann. of Math. (2) 47 (1946), 503-509.
  • [23] W. W. Comfort and K. A. Ross, Pseudocompactness and uniformcontinuityin topological groups (to appear in the Pacific J. Math.)