Pacific Journal of Mathematics

Holonomy groups of indefinite metrics.

H. Wu

Article information

Source
Pacific J. Math., Volume 20, Number 2 (1967), 351-392.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102992832

Mathematical Reviews number (MathSciNet)
MR0212740

Zentralblatt MATH identifier
0149.39603

Subjects
Primary: 53.72

Citation

Wu, H. Holonomy groups of indefinite metrics. Pacific J. Math. 20 (1967), no. 2, 351--392. https://projecteuclid.org/euclid.pjm/1102992832


Export citation

References

  • [1] W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428-443.
  • [2] M. Berger, Sur les groupes d'holonomie des varietes a connexion affine et des varietes riemanniennes,Bull. Soc. Math. France 83 (1953), 279-330.
  • [3] M. Berger, Les espaces symmetriquesnoncompacts, Ann. Ec. Norm. Sup. 74 (1957), 85-177.
  • [4] A. Borel and A. Lichnerowicz, Groupes d'holonomie de varietesriemanniennes, C. R. Acad. Sc. Paris 234 (1952), 1835-1837.
  • [5] N. Bourbaki, "Elementsdes mathematiques"Groupes et algebres de Lie, Hermann, Paris, 1960.
  • [6] C. Chevalley, On the topological structure of solvable groups, Ann. of Math. 42 (1941), 668-675.
  • [7] M. Goto, Faithfulrepresentation of Lie groups I, Math. Japonica 1 (1948), 107-119.
  • [8] S. Helgason, Differentialgeometry and Symmetricspaces, Academic Press, New York, 1962.
  • [9] N. Hicks, A theorem on affine connexions, III. J. Math. 3 (1959), 242-254.
  • [10] S. Kobayashi and K. Nomizu, Foundations of differentialgeometry, Interscience Publishers, New York, 1963.
  • [11] A. Malcev, On the theory of Lie groups in the large, Matem. Sbornik, N. S. (58)
  • [12] A. Nijenhuis, On the holonomy group of linear connections, Indag. Math. 15 (1953), 233-249; 16 (1954), 17-25.
  • [13] K. Nomizu, Invariantafflne connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
  • [14] J. Simons, On transitivityof holonomy systems, Ann. of Math. 76 (1962), 213-234.
  • [15] H. Wu, On the de Rham decomposition theorem, III. J. Math. 8 (1964), 291-311.
  • [16] H. Wu,Decomposition of riemannian manifolds, Bull. Amer. Math. Soc. 70 (1964), 610-617.