Pacific Journal of Mathematics

Hypercyclic rings.

William H. Caldwell

Article information

Source
Pacific J. Math., Volume 24, Number 1 (1968), 29-44.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102991597

Mathematical Reviews number (MathSciNet)
MR0225812

Zentralblatt MATH identifier
0155.36203

Subjects
Primary: 16.50

Citation

Caldwell, William H. Hypercyclic rings. Pacific J. Math. 24 (1968), no. 1, 29--44. https://projecteuclid.org/euclid.pjm/1102991597


Export citation

References

  • [1] K. Asano, Uber verallgemeinerte Abelsche gruppen mit hypercomplexem Operator- enring und ihre Anwendungen, Japanese J. of Math. 15 (1939), 231-253.
  • [2] H. Bass, Finististicdimension and a homological generalization ofsemi-primary rings, Trans. Amer. Math. Soc. 46 (1960), 466-488.
  • [3] C. Faith, On Kthe rings, Mathematische Annalen 164 (1966), 207-212.
  • [4] C. Faith,Lectures on injective modules and quotient rings, Rutgers--The State University, New Brunswick, N. J. (1964), mimeographed.
  • [5] M. Ikeda and T. Nakayama, On some characteristic properties of quasi-Frobenius and regular rings, Proc. Amer. Math. Soc. 5 (1954), 15-19.
  • [6] L. Levy, Commutative rings whose homomorphic images are self injective (to appear)
  • [7] B. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645-650.
  • [8] A. Rosenberg and D. Zelinsky, Annihilators,Portugalia Mathematica 20 (1961), 53-65.
  • [9] A. Rosenberg and D. Zelinsky, Finitenessof the injective hull, Mathematische Zeitschrift 70 (1959), 372-380.
  • [10] Y. Utumi, On continuous rings and self injective rings, Trans. Amer. Math. Soc. 118 (1965), 158-173.