Pacific Journal of Mathematics

On general ${\rm Z.P.I.}$-rings.

Craig A. Wood

Article information

Source
Pacific J. Math., Volume 30, Number 3 (1969), 837-846.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102978266

Mathematical Reviews number (MathSciNet)
MR0248126

Zentralblatt MATH identifier
0181.04902

Subjects
Primary: 13.50

Citation

Wood, Craig A. On general ${\rm Z.P.I.}$-rings. Pacific J. Math. 30 (1969), no. 3, 837--846. https://projecteuclid.org/euclid.pjm/1102978266


Export citation

References

  • [1] Keizo Asano, Uber kommutative Ringe, in denen jedes Ideal als Produkt von Prmidealen darstellbar ist, J. Math. Soc. Japan 1 (1951), 82-90.
  • [2] N. Bourbaki, Elements de Mathematique, Algebre Commutative, Chap. 7, Paris, 1961.
  • [3] H. S. Butts and Robert W. Gilmer, Jr., Primaryideals and prime power ideals, Canad. J. Math. 18 (1966), 1183-1195.
  • [4] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42.
  • [5] Robert W. Gilmer, Jr., Eleven nonequivalent conditions on a commutativering, Nagoya Math. J. 26(1966), 183-194.
  • [6] Robert W. Gilmer, On a classical theorem of Noether in ideal theory, Pacific J. Math. 13 (1963), 579-583.
  • [7] Robert W. Gilmer, Jr., and Joe Leonard Mott, Multiplicationrings as rings in which ideals with prime radical are primary,Trans. Amer. Math. Soc. 114 (1965), 40-52.
  • [8] Wolfgang Krull, Idealtheorie, New York, 1948.
  • [9] Wolfgang Krull, Uber den Aufbau des Nullideals in ganz abgeschlossenen Ringenmit Teilerkettensatz, Math. Ann. 102 (1926). 363-369.
  • [10] Keizi Kubo, Uber die Noetherschen fiinf Axiome in kommutativen Ringen, J. Sci. Hiroshima Univ. (A) 10 (1940), 77-84.
  • [11] Shinziro Mori, AllgemeineZ.P.L-Ringe, J. Sci. Hiroshima Univ. (A) 10 (1940), 117-136.
  • [12] Shinziro Mori, Axiomatische Begrndungdes Multiplikationringe,J. Sci. Hiroshima Univ. (A) 3 (1932), 45-59.
  • [13] E. Noether, AbstrakterAufbauder Idealtheorie in algebraischenZahl--und Funktionenkrpern,Math. Ann. 96 (1926), 36-61.
  • [14] M. Sono, On congruences, II, Mem. Coll. Sci. Kyoto Univ. 3 (1918), 113.
  • [15] Michio Yoshida and Motoyoshi Sakuma, The intersectiontheorem on Noetherian rings, J. Sci. Hiroshima Univ. (A) 17 (1954), 317-320.
  • [16] Oscar Zariski and Pierre Samuel, Commutative algebra, Vol. I, Princeton, 1958.
  • [17] Oscar Zariski and Pierre Samuel, Commutative algebra, Vol. II, Princeton, 1960.