Pacific Journal of Mathematics

Hilbert transforms, and a problem in scattering theory.

M. J. Westwater

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 567-608.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945890

Mathematical Reviews number (MathSciNet)
MR0343068

Zentralblatt MATH identifier
0264.47025

Subjects
Primary: 47A40: Scattering theory [See also 34L25, 35P25, 37K15, 58J50, 81Uxx]

Citation

Westwater, M. J. Hilbert transforms, and a problem in scattering theory. Pacific J. Math. 47 (1973), no. 2, 567--608. https://projecteuclid.org/euclid.pjm/1102945890


Export citation

References

  • [1] J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schroe- dinger Hamiltonians,Commun. Math. Phys., 22 (1971), 269-279.
  • [2] N. K. Bary, Treatise on TrignometricSeries II, MacMillan, New York, 1964.
  • [3] F. H. Brownell, Some integral limits associated with Hilbert transforms,J. Math. Anal. Appl, 12 (1965), 401-409.
  • [4] F. H. Brownell, Some integral limits associated with Hilbert transformsII, J. Math. Anal. Appl., 16 (1966), 15-30.
  • [5] N. Dunford and J. T. Schwartz, Linear Operators, Part II, Wiley, New York, 1963. (5. 1Linear Operators, Part III: Spectral Operators, Wiley, New York, 1971.
  • [7] C. R. Garibotti, The Schwinger variational Principle and Pade approximants,Ann. Phys., 71 (1972), 486-496.
  • [8] M. L. Goldberger and K. M. Watson, Collision Theory, Wiley, New York, 1964.
  • [9] T. Kato, PerturbationTheory for Linear Operators, Springer-Verlag, New York, 1966.
  • [10] M. G. Krein and H. Langer, On the spectral function of a self-adjoint operator in a space with indefinite metric, Dokl. Akad. Nauk 152, (1963), 39-42.
  • [11] H. Langer, Lecture Notes on J-Self-ad joint Operators, University of Toronto, 1967.
  • [12] H. Langer,SpectralfunktioneneinerKlasseJ-selbstadjungiertenOperator en, Mathematische Nachrichten, 33 (1967), 107-120.
  • [13] G. D. McCartor, Topics in ScatteringTheory, Ph.D. Thesis, Texas A & M Uni- versity, 1969.
  • [14] J. Nuttall, The convergence of the Kohn variational method, Annals of Physics, 10 (1969), 428-443.
  • [15] I. I. Privalov, Randeigenschaften Analytischer Funktionen, VEB, Deutscher Verlag der Wissenschaften, Berlin, 1956.
  • [16] C. R. Putnam, CommutationProperties of Hilbert Space Operators and Related Topics, Springer-Verlag, Now York, 1967.
  • [17] B. Simon, Quantum Mechanics for HamiltoniansDefined as QuadraticForms, Princeton University Press, 1971.
  • [18] M. H. Stone, Linear transformationsin Hilbert space, Amer. Math. Soc, 1932.
  • [19] R. F. Streater and A. S. Wightman, PCT, Spin, and Statistics, and All That, W. A. Benjamin, New York, 1964.
  • [20] A. Zygmund, Integrates Singulieres,Springer Notes 204, 1971.