Pacific Journal of Mathematics

Isomorphic classes of the spaces $C_{\sigma}(S)$.

M. A. Labbé and John Wolfe

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 481-485.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945881

Mathematical Reviews number (MathSciNet)
MR0326367

Zentralblatt MATH identifier
0265.46027

Subjects
Primary: 46E15: Banach spaces of continuous, differentiable or analytic functions

Citation

Labbé, M. A.; Wolfe, John. Isomorphic classes of the spaces $C_{\sigma}(S)$. Pacific J. Math. 47 (1973), no. 2, 481--485. https://projecteuclid.org/euclid.pjm/1102945881


Export citation

References

  • [1] D. W. Dean, Projections in certain continuous function spaces C(H) and subspaces of C(H)isomorphic with C(H),Canad. J. Math., 14 (1962), 385-401.
  • [2] M. Jerison, Certain spaces of continuous functions,Trans. Amer. Math. Soc,70 (1951), 103-113.
  • [3] M. Jonac and C. Samuel, Sur les sous-espaces complementers de C(S), Bull. Sci. Math., 2e serie 94 (1970), 159-163.
  • [4] J. L. Kelley, General Topology, Princeton, NewJersey, 1955.
  • [5] K. Kuratowski, Topology, vol. I., New York, 1966.
  • [6] K. J. Lindberg, Contractive projections in Orlicz sequence spaces and continuous function spaces, Thesis, University of California at Berkeley, 1971.
  • [7] J. Lindenstrauss andD.E. Wulbert, On the classifications of the Banach spaces whose duals are Li spaces, J. Functional Analysis, 4 (1969), 332-349.
  • [8] A. Pelczyski, Projections in certain Banach spaces, Studia Math., 19(1960), 209-228.
  • [9] A. Pelczyski, Linear extensions, linear averagings and their applications to linear classification of spaces of continuous functions, Rozprawy Matematyczne, 58 (1968).
  • [10] A. Pelczyski, On C(S)--subspaces of separable Banach spaces, Studia Math., 31 (1968), 513-522.
  • [11] C.Samuel, Sur certains espaces C(S)et sur les sous-espaces complements de C(S), Bull. Sci. Math., 2 serie 95 (1971), 65-82.
  • [12] Z. Semadeni, Banach spaces non-isomorphic to their Cartesian squares. II, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 8 (1960), 81-84.