Pacific Journal of Mathematics

Structure hypergroups for measure algebras.

Charles F. Dunkl

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 413-425.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945874

Mathematical Reviews number (MathSciNet)
MR0336225

Zentralblatt MATH identifier
0276.43005

Subjects
Primary: 43A10: Measure algebras on groups, semigroups, etc.

Citation

Dunkl, Charles F. Structure hypergroups for measure algebras. Pacific J. Math. 47 (1973), no. 2, 413--425. https://projecteuclid.org/euclid.pjm/1102945874


Export citation

References

  • [1] C. DunkI, Themeasure algebra of a locally compact hyper group, Trans. Amer. Math.
  • [2] C. Dunkl and D. Ramirez, Topics in HarmonicAnalysis,Appleton-Century-Crofts, New York,1971.
  • [3] I. Glicksberg, Convolution semigroups of measures, Pacific J. Math., 9 (1959), 51-67.
  • [4] J. Pym, Weakly separately continuous measures algebras, Math. Annalen, 175 (1968), 207-219.
  • [5] J. Pym, Dual structures for measure algebras, Proc. London Math. Soc, (3), 19 (1969), 625-660.
  • [6] D. Ragozin, Central measures on compact simple Lie groups, J. Functional Anal., 10 (1972), 212-229.
  • [7] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc, 119 (1965), 150-166.