Pacific Journal of Mathematics

One sided prime ideals.

John Dauns

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 401-412.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945873

Mathematical Reviews number (MathSciNet)
MR0327841

Zentralblatt MATH identifier
0261.16016

Subjects
Primary: 16A66

Citation

Dauns, John. One sided prime ideals. Pacific J. Math. 47 (1973), no. 2, 401--412. https://projecteuclid.org/euclid.pjm/1102945873


Export citation

References

  • [1] J. Dauns, Multiplier rings and primitiveideals, Trans. Amer. Math. Soc, 145 (1969), 124-158.
  • [2] J. Dauns, Simple modules and centralizers, Trans. Amer. Math. Soc, 166 (1972), 457-477.
  • [3] C. Faith and Y. Utumi, Quasi-injective modules and their endomorphismrings, Arch. Math., Vol. XV (1964), 166-174.
  • [4] A. W. Goldie, The Structureof Noetherian Rings, Tulane Ring Year Lecture Notes, Lecture Notes in Mathematics No. 246, Springer (1972), New York.
  • [5] R. Gordon and J. C. Robson, Krull-dimension and monoform modules, to appear.
  • [6] K. Koh, On almost maximal right ideals, Proc. Amer. Math. Soc, 25 (1970), 266-272.
  • [7] K. Koh, Quasi-Simple Modules and Other Topics in Ring Theory, Tulane Ring Year Lecture Notes, Lecture Notes in Mathematics No. 246, Springer (1972), New York.
  • [8] K. Koh and A. Mewborn, A class of prime rings, Canad. Math. Bull., 9 (1966), 63-
  • [9] J. Lambek and G. Michler, The torsion theory at a prime ideal of a rightNoetherian ring, to appear.
  • [10] J. C. Robson, Idealizers and hereditary Noetherian prime rings, J. Algebra, 22 (1972), 45-81.
  • [11] H. Storrer, Rational extensions of modules, Pacific J. Math., 38 (1971), 785-794.
  • [12] H. Storrer, On Goldman's Primary Decomposition, Tulane Ring Year Lecture Notes, Lecture Notes in Mathematics No. 246, Springer (1972), New York.