Pacific Journal of Mathematics

Dimension theory in zero-set spaces.

M. J. Canfell

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 393-400.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945872

Mathematical Reviews number (MathSciNet)
MR0367947

Zentralblatt MATH identifier
0262.54036

Subjects
Primary: 54F45: Dimension theory [See also 55M10]
Secondary: 54C50: Special sets defined by functions [See also 26A21]

Citation

Canfell, M. J. Dimension theory in zero-set spaces. Pacific J. Math. 47 (1973), no. 2, 393--400. https://projecteuclid.org/euclid.pjm/1102945872


Export citation

References

  • [1] M. J. Canfell, An algebraic characterizationof dimension, Proc. Amer. Math. Soc, 32 (1972), 619-620.
  • [2] E. Cech, Contribution a la theorie de la dimension, Cas. Mat. Fys., 62 (1933), 277- 291.
  • [3] C. H. Dowker, Inductive dimension of completely normal spaces, Quart. J. Math. Oxford Ser., (2) 4 (1953), 267-281.
  • [4] C. H. Dowker, On countably paracompact spaces, Canad. J. Math., 3 (1951), 219-224.
  • [5] C. H. Dowker,Mappingtheorems for non-compact spaces, Amer. J. Math., 69 (1947), 200-242.
  • [6] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
  • [7] R. Engelking, Outline of General Topology, North Holland, Amsterdam, 1968.
  • [8] J. R. Gard and R. D. Johnson, Four dimension equivalences, Canad. J. Math., 20 (1968), 48-50.
  • [9] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.
  • [10] H. Gordon, Rings of functionsdetermined by zero-sets, Pacific J. Math., 36 (1971), 133-157.
  • [11] A. W. Hager, On inverse-closed subalgebras of C(X), Proc. London Math. Soc, (3) 19 (1969), 233-257.
  • [12] E. Hemmingsen, Some theorems in dimension theory for normal Hausdorff spaces, Duke Math. J., 13 (1946), 495-504.
  • [13] J. Nagata, Modern DimensionTheory, John Wiley and Sons Inc., New York, 1966.