Pacific Journal of Mathematics

Centralizers of twisted group algebras.

Robert C. Busby

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 357-392.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945871

Mathematical Reviews number (MathSciNet)
MR0333595

Zentralblatt MATH identifier
0274.22010

Subjects
Primary: 43A20: $L^1$-algebras on groups, semigroups, etc.
Secondary: 46K05: General theory of topological algebras with involution

Citation

Busby, Robert C. Centralizers of twisted group algebras. Pacific J. Math. 47 (1973), no. 2, 357--392. https://projecteuclid.org/euclid.pjm/1102945871


Export citation

References

  • [1] R. C. Busby, Double centralizers and extensions of C*-algebras,Trans. Amer. Math. Soc, 132, no. 1 (1968), 79-99.
  • [2] R. C. Busby, On a theorem of Fell, Proc. Amer. Math. Soc, 30 no. 1 (1971), 133-140.
  • [3] R. C. Busby,On the equivalence of twisted group algebras and Banach ^-algebraic bundles, submitted to Proc. Amer. Math. Soc.
  • [4] R. C. Busby and H. A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc, 149 (1970), 503-537.
  • [5] L. Calabi, Sur les extensions des groupes topologiques, Ann. Math, pura Appl. (4), 32 (1951), 295-370.
  • [6] J. Dauns, Multiplier rings and primitiveideals, Trans. Amer. Math. Soc, 145 (1969), 125-158.
  • [7] J. Dauns and K. H. Hofmann, Spectral theory of algebras and adjunction of identity, to appear.
  • [8] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
  • [9] J. Dixmier, Les algebres dOperators daus espace Hilbertien (Algebres de von New- mann), Gauthier-Villars, Paris, 1957.
  • [10] C. M. Edwards, The measure algebra of a central group extension, to appear.
  • [11] C. M. Edwards and J. T. Lewis, Twisted group algebras II, Commun. Math. Phys., 13 (1969), 131-141.
  • [12] J. M. G. Fell, An extension of Mackey's method to Banach ^-algebraic bundles, Memoirs Amer. Math. Soc, no. 90 (1969).
  • [13] F. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math., 15 (1965), 1187-1219.
  • [14] F. Greenleaf, Characterization of group algebras in terms of their translation operators, Pacific J. Math., 18 (1966), 243-276.
  • [15] G. Hochschild, Cohomologyand representations of associative algebras, Duke Math. J., 14 (1947), 921-948.
  • [16] B. E. Johnson, An introduction to the the theory of centralizers, Proc. London Math. Soc, 14 (1964), 299-320.
  • [17] B. E. Johnson,Centralizers on certain topological algebras, J. London Math. Soc, (1964), 603-614.
  • [18] H. Leptin, Verallgemeinerte Lx-algebren, Math. Ann., 159 (1965), 51-76.
  • [19] H. Leptin,Verallgemeinerte U-algebren und projektive darstellungen local kompakter gruppen I, Invent. Math., 3 (1967), 257-281.
  • [20] H. Leptin, Verallgemeinerte L^algebren und projektive darstellungen local kompakter gruppen II, Invent. Math., 4 (1967), 68-86.
  • [21] J. G., Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-261.
  • [22] J. G., On isometric isomorphism of group algebras, Pacific J. Math., 1 (1951), 305-311.