Pacific Journal of Mathematics

Nonexpansive projections on subsets of Banach spaces.

Ronald E. Bruck, Jr.

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 341-355.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945870

Mathematical Reviews number (MathSciNet)
MR0341223

Zentralblatt MATH identifier
0274.47030

Subjects
Primary: 47H99: None of the above, but in this section
Secondary: 46B99: None of the above, but in this section

Citation

Bruck, Ronald E. Nonexpansive projections on subsets of Banach spaces. Pacific J. Math. 47 (1973), no. 2, 341--355. https://projecteuclid.org/euclid.pjm/1102945870


Export citation

References

  • [1] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169-172.
  • [2] F. E. Browder, Convergence of approximates to fixed points of nonexpansivenon- linear mappings in Banach spaces, Arch, for Rat. Mech. Anal., 24 (1967), 82-90.
  • [3] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Zeitschr., 100 (1967), 201-225.
  • [4] R. E. Bruck, Jr., Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc, 76 (1970), 384-386.
  • [5] D. G. de Figueiredo and L. A. Karlovitz, On the extension of contractions on normed spaces, Proc. Symp. in Pure Math, vol XVIII, Parti, Amer. Math. Soc, Providence, R.
  • [6] D. G. de Figueiredo and L. A. Karlovitz,On the radialprojection in normed spaces, Bull. Amer. Math. Soc, 73 (1967), 364-368.
  • [7] J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc, 129 (1967), 436-446.
  • [8] R. C. James, Orthogonality and linear functionalsin normed linear spaces, Trans. Amer. Math. Soc, 61 (1947), 265-292.
  • [9] L. A. Karlovitz, The construction and application of contractive retractions in 2- dimensional normed linear spaces, Tech. Note BN-717, Institute for Fluid Dynamics and Applied Mathematics, U. Maryland.
  • [10] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc, 100 (1961), 29-43.
  • [11] V. L. Smulian, Sur la derivabilite de la norme dans espace de Banach, Dokl. Akad. Nauk SSSR (N. S.), 27 (1940), 643-648.