Pacific Journal of Mathematics

The lattice of closed ideals and $a^{\ast}$-extensions of an abelian $l$-group.

Roger Bleier and Paul Conrad

Article information

Source
Pacific J. Math., Volume 47, Number 2 (1973), 329-340.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945869

Mathematical Reviews number (MathSciNet)
MR0325486

Zentralblatt MATH identifier
0263.06013

Subjects
Primary: 06A55

Citation

Bleier, Roger; Conrad, Paul. The lattice of closed ideals and $a^{\ast}$-extensions of an abelian $l$-group. Pacific J. Math. 47 (1973), no. 2, 329--340. https://projecteuclid.org/euclid.pjm/1102945869


Export citation

References

  • [1] A. Bigard, Contribution a la theorie des groupes reticules, Thesis, Universite de Paris, 1969.
  • [2] B. Birkhoff, Lattice theory, rev. ed., Amer. Math. Soc. Colloq. Publ. Vol. 25, 1967.
  • [3] R. D. Byrd, Archimedean closures in lattice-ordered groups, Canad. J. Math., 21 (1969), 1004-1011.
  • [4] Complete distributivityin lattice-ordered groups, Pacific J. Math., 20 (1967), 423-432.
  • [5] R. D. Byrd and J. T. Lloyd, Closed subgroups and complete distributivityin lattice- ordered groups, Math. Z., 101 (1967), 123-130.
  • [6] P. Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J., 38 (1971), 151-160.
  • [7] P. Conrad, The hulls of representable l-groups and f-rings, to appear, J. Australian Math. Soc.
  • [8] P. Conrad, The lateral completion of a lattice-ordered group, Proc. London Math. Soc, XIX (1969), 444-480.
  • [9] P. Conrad,Lattice-ordered groups, Tulane University,1970.
  • [10] P. Conrad, J. Harvey, and C. Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc, 108 (1963), 143-169.
  • [11] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, London, New York, Paris, 1963.
  • [12] S. McCleary, The closed prime subgroups of certain ordered permutationgroups, Pacific J. Math., 31 (1969), 745-754.
  • [13] S. Wolfenstein, Contribution a etude des groupes reticules; Extensionsarchi- mediennes, Groupes a valeurs normales, Thesis, Universite de Paris, 1970.
  • [14] K. Yoshida, On a vector lattice with unit, Proc Japan Acad. Tokyo, 17 (1941),121- 124.