Pacific Journal of Mathematics

Sets generated by rectangles.

R. H. Bing, W. W. Bledsoe, and R. D. Mauldin

Article information

Source
Pacific J. Math., Volume 51, Number 1 (1974), 27-36.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102912790

Mathematical Reviews number (MathSciNet)
MR0357124

Zentralblatt MATH identifier
0279.04001

Subjects
Primary: 04A15
Secondary: 04A20 04A30 28A05: Classes of sets (Borel fields, $\sigma$-rings, etc.), measurable sets, Suslin sets, analytic sets [See also 03E15, 26A21, 54H05]

Citation

Bing, R. H.; Bledsoe, W. W.; Mauldin, R. D. Sets generated by rectangles. Pacific J. Math. 51 (1974), no. 1, 27--36. https://projecteuclid.org/euclid.pjm/1102912790


Export citation

References

  • [1] J. A. Johnson, Amer. Math. Monthly, 79 (1972), 307.
  • [2] Kenneth Kunen, Inaccessibility Properties of Cardinals, Ph. D. Thesis, Department of Mathematics, Stanford University, August, 1968.
  • [3] C. Kuratowski, Topology I, Academic Press, New York, 1966.
  • [4] H. Lebesgue, Sur les fonctions representable analytiquement,J. de Math., (6) 1 (1905), 139-216.
  • [5] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Annals of Math. Logic, 2 (1970), 143-148.
  • [6] B. V. Rao, On discrete Borel spaces and protective sets, Bull. Amer. Math. Soc, 75 (1969), 614.
  • [7] B. V. Rao,On discrete Borel spaces, Acta Math. Acad. Scien. Hungaricae, 22 (1971), 197.
  • [8] W. Sierpinski, Sur existence de diverses classes d'ensembles, Fund. Math., 14 (1929), 82-91.
  • [9] W. Sierpinski, Hypothese du Continu, Warsaw, 1934, 9.