Pacific Journal of Mathematics

Reproducing kernels and operators with a cyclic vector. I.

Vashishtha N. Singh

Article information

Pacific J. Math., Volume 52, Number 2 (1974), 567-584.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47A65: Structure theory
Secondary: 46E20: Hilbert spaces of continuous, differentiable or analytic functions


Singh, Vashishtha N. Reproducing kernels and operators with a cyclic vector. I. Pacific J. Math. 52 (1974), no. 2, 567--584.

Export citation


  • [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc, 68 (1950), 337-404.
  • [2] S. Bergman, The Kernel Function and Conformed Mapping, American Mathematical Society Surveys Number V, New York, 1950.
  • [3] A. Beurling, On two problems concerning linear transformationsin Hilbert space, Acta. Math., 81 (1949), 239-255.
  • [4] G. Birkhof and S. MacLane, A Surveyof ModernAlgebra, Revised edition, Macmillan Co., New York, 1963.
  • [5] S. Bochner and W. T. Martin, Several Complex Variables, Fourth printing, Princeton University Press, 1964.
  • [6] J. Dixmier, Les Algebres dy Operateurs danse Le Espace Hilbertian, (Algebres de Von Neumann),Gauthier-Villaries, 55 Quai des Grandes Augustins, 1957.
  • [7] N. Dunford and J. Schwartz, Linear Operators, Part II, Interscience, Wiley and Sons, New York, Third printing, March, 1967.
  • [8] I.C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Translation from the Russian by A. Feinstein, Amer. Math. Soc, Provi- dence, R. I., 1970.
  • [9] P. R. Halmos, Finite DimensionalVector Spaces, Second edition, Van Nostrand, Princeton, N. J., 1958.
  • [10] P. R. Halmos, Introductionto Hilbert Space, Second edition, Van Nostrand, Princeton, N. J., 1957.
  • [11] H. Helson, Lectures on InvariantSubspaces, Academic Press, New York, 1964.
  • [12] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Revised edition, Amer. Math. Soc. Colloq. Publ., Vol. 31, Amer. Math. Soc, Providence, R. I., 1957.
  • [13] L. Hormander, An Introductionto Complex Analysis in Several Variables, Van Nostrand, Princeton, N. J., 1967.
  • [14] J. L. Kelley and I. Namioka, LinearTopological Spaces, Van Nostrand,Princeton, N. J., 1963.
  • [15] M. S. Livsic, On Spectral Resolution of Linear Nonself Adjoint Operators, Mat. Sb., 34 (76), (1954), 145-199. English translation Amer. Math. Soc. Translations (2), 5 (1957), 67-114.
  • [16] S. MacLane, Homology, Academic Press, New York, 1963.
  • [17] M. A. Naimark, Normed Rings, P. Noordhoff N. V., Groningen, Netherlands, 1964.
  • [18] R. R. Phelps, Lectures on Choquets Theorem, Van Nostrand Mathematical Studies
  • [7] Van Nostrand, Princeton, N. J., 1966.
  • [19] G. C. Rota, On models for linear operators, Comm. Pure Appl. Math., 13 (1960), 469-472.
  • [20] V. N. Singh, ReproducingKernels and Operators with a Cyclic Vector, Thesis, University of California, Berkeley, 1969.