Pacific Journal of Mathematics

Topologies compatible with homeomorphism groups.

Peter Fletcher and Pei Liu

Article information

Source
Pacific J. Math., Volume 56, Number 1 (1975), 77-86.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102906583

Mathematical Reviews number (MathSciNet)
MR0380754

Zentralblatt MATH identifier
0306.54026

Subjects
Primary: 54H15: Transformation groups and semigroups [See also 20M20, 22-XX, 57Sxx]

Citation

Fletcher, Peter; Liu, Pei. Topologies compatible with homeomorphism groups. Pacific J. Math. 56 (1975), no. 1, 77--86. https://projecteuclid.org/euclid.pjm/1102906583


Export citation

References

  • [1] R. Arens, Topologies for homeomorphism groups, Amer. J. Math., 68 (1946), 593-610.
  • [2] J. Dieudonne,On topological groups of homeomorphisms, Amer. J. Math.,70 (1948), 659-680.
  • [3] P. Fletcher, On completeness of quasi-uniform spaces. Arch. Math.(Basel) 22 (1971), 200-204.
  • [4] P. Fletcher, Homeomorphism groups with the topology of quasi-uniform convergence, Arch. Math. (Basel), 22 (1971), 88-93.
  • [5] P. Fletcher and W. F. Lindgren, A note on spaces of second category, Arch. Math. (Basel), 24 (1973), 186-187.
  • [6] P. Fletcher and R. L. Snider, Topological Galois spaces, Fund. Math., 68 (1970), 143-148.
  • [7] J. R. Fogelgren and R. A. McCoy, Some topological properties defined by homeomorphism groups, Arch. Math. (Basel), 22 (1971), 528-533.
  • [8] J. de Groot, Groups represented by homeomorphism groups, I, Math. Annalen, 138 (1959), 80-102.
  • [9] J. de Groot and R. J. Wille, Rigid continua and topological group pictures, Arch. Math. (Basel), 9 (1958), 441-446.
  • [10] J. de Groot and R. H. McDowell, Autohomeomorphism groups of ^-dimensional spaces, Compositio Math., 15 (1963), 203-209.
  • [11] A. Kertesz and T. Szele, On existence of non-discrete topologies in infinite abelian groups, Publ. Math. Debrecen, 3 (1953), 187-189.
  • [12] Pei Liu, Nondiscrete topologies on homeomorphism groups of uniform spaces, submitted for publication.
  • [13] F. W. Lozier, A class of compact rigid 0-dimensional spaces. Canad. J. Math., 21 (1969), 817-821.
  • [14] M. G. Murdeshwar and S. A. Naimpally, Quasi-uniform Topological Spaces, Noordhoff (1966).
  • [15] W. J. Pervin, Quasi-uniformization of topological spaces. Math.Ann., 147 (1962), 316-317.
  • [16] B. L. van der Waerden and D. van Dantzig, Ober metsch homogene Rciume, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universitat, 6 (1928), 367-376.