Pacific Journal of Mathematics

Some new results on odd perfect numbers.

G. G. Dandapat, J. L. Hunsucker, and Carl Pomerance

Article information

Source
Pacific J. Math. Volume 57, Number 2 (1975), 359-364.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905990

Mathematical Reviews number (MathSciNet)
MR0384681

Zentralblatt MATH identifier
0304.10003

Subjects
Primary: 10A40

Citation

Dandapat, G. G.; Hunsucker, J. L.; Pomerance, Carl. Some new results on odd perfect numbers. Pacific J. Math. 57 (1975), no. 2, 359--364.https://projecteuclid.org/euclid.pjm/1102905990


Export citation

References

  • [1] E.Artin, The orders of the linear groups, Comm. Pure Appl. Math., VIII (1955), 355-366.
  • [2] A. S. Bang, TaltheoretiskeUndersgelser, Tidsskrift Math. 5 IV (1886), 70-80 and 130-137.
  • [3] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of an --bn, Ann. of Math., 5 (1904), 173-180.
  • [4] L. E. Dickson, On the cyclotomic function,Amer. Math. Monthly, 12 (1905), 86-
  • [5] L. Euler, Tractatus de Numerorum Doctrina, Commentationes Arithmeticae Col- lectae, 2 (1849), 514.
  • [6] C. G. Gerono, Note sur la resolution en nombres entiers et positifs de equation xm = yn +if N o u v#Ann. Math., (2) 9 (1870), 469-471, 10 (1871), 204-206.
  • [7] H.-J. Kanold, Satze uber Kreisteilungspolynomeund ihre Anwendungen auf einige zahlentheoretische Probleme, I, J. Reine Angew. Math., 187 (1950), 169-182.
  • [8] H.-J. Kanold, Uber "Super perfect numbers", Elem. Math., 24 (1969), 61-62.
  • [9] H. W. Leopoldt, L'sung einer Aufgabe von Kostrikhin,J. Reine Angew. Math., 221 (1966),160-161.
  • [10] T. Nagell, Introduction to Number Theory, Chelsea Publ. Co., New York, 1964.
  • [11] H. G. Niederreiter, Solution of Aufgabe 601, Elem. Math., 25 (1970), 66-67.
  • [12] C. Pomerance, Odd perfect numbers are divisible by at least seven distinctprimes, Acta Arith., 25 (1974),265-300.
  • [13] B. Richter, Die Primfaktorzerlegungder Werte der Kreisteilungspolynome,J. Reine Angew. Math., 254 (1972), 123-132.
  • [14] N. Robbins, The non-existence of odd perfect numbers with less than seven distinct prime factors, doctoral dissertation at the Polytechnic Institute of Brooklyn, June, 1972.
  • [15] W. Sierpiski, Sur les nombres dont la somme des diviseurs est un puissance du nombre 2, The Golden Jubile Commemoration Volume (1958-9), Calcutta Math. Soc, 7-9.
  • [16] D. Suryanarayana, Super perfect numbers, Elem. Math., 24 (1969), 16-17.
  • [17] D. Suryanarayana,Problems in theory of numbers, Bull. Amer. Math. Soc, 76 (1970), 977.
  • [18] D. Suryanarayana, There is no odd super perfect number of the form p2a, Elem. Math., 28 (1973), 148-150.
  • [19] J. J. Sylvester, On the divisors of the sum of a geometrical series whose first term is unity and common ratio any positive or negative integer, Nature XXXVII (1888), 417-418.
  • [20] K. Zsigmondy, Zur Theorie der Potenzreste, Monatshefte Math. Phys., 3 (1892), 265-284.