Pacific Journal of Mathematics

A map of $E^{3}$ onto $E^{3}$ taking no disk onto a disk.

Edythe P. Woodruff

Article information

Source
Pacific J. Math., Volume 58, Number 1 (1975), 291-295.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905859

Mathematical Reviews number (MathSciNet)
MR0383416

Zentralblatt MATH identifier
0302.54010

Subjects
Primary: 57A10

Citation

Woodruff, Edythe P. A map of $E^{3}$ onto $E^{3}$ taking no disk onto a disk. Pacific J. Math. 58 (1975), no. 1, 291--295. https://projecteuclid.org/euclid.pjm/1102905859


Export citation

References

  • [1] Steve Armentrout, MonotonedecompositionsofE3, Annals of Math. Studies,60(1966), 1-25.
  • [2] R. H. Bing, A homeomorphismbetweenthe ^-sphereand the sum of two hornedspheres, Ann. of Math., (2) 56 (1952), 354-362.
  • [3] R. H. Bing and K. Borsuk, A ^-dimensionalabsolute retract whichdoes not containanydisk, Fund, tyath., 54 (1964), 159-175.
  • [4] Louis F. McAuley, Upper semicontinuousdecompositionsof E3 into E3 and generalizations to metric spaces. Topology of 3-Manifolds and Related Topics, Proc. Univ. of Georgia Inst., 1961, 21-26.
  • [5] Myra Jean Reed, Decomposition spaces and separation properties, Doctoral Dissertation, SUNY/Binghamton, May, 1971.
  • [6] Edythe P. Woodruff, Concerning the conditionthat a disk in E3IG be the imageof a diskin E3, Proc. Conf. on Monotone Mappings and Open Mappings at SUNY/Binghamton (1970).
  • [7] Edythe P. Woodruff,Concerning the condition that a disk in E3/G be the imageof a disk in f?3, Doctoral Dissertation, SUNY/Binghamton, May, 1971.
  • [8] Edythe P. Woodruff, Conditions in whichdisks areP-liftable, Trans. Am. Math. Soc, 186(1973), 403-418.
  • [9] Edythe P. Woodruff, Examples of disks in E3/G whichcannot be approximatedby P-liftable disks, Fund. Math., 86(1974), 117-136.