Pacific Journal of Mathematics

Integration of compact set-valued functions.

Zvi Artstein and John A. Burns

Article information

Pacific J. Math., Volume 58, Number 2 (1975), 297-307.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 28A45
Secondary: 46G10: Vector-valued measures and integration [See also 28Bxx, 46B22]


Artstein, Zvi; Burns, John A. Integration of compact set-valued functions. Pacific J. Math. 58 (1975), no. 2, 297--307.

Export citation


  • [1] K. J. Arrow, and F. H. Hahn, General Competitive Analysis, Holden-Day Inc., San Francisco, 1971.
  • [2] Z. Artstein, On the calculus of set-valued functions, Indiana Univ. Math. J., 24 (1974),433-441.
  • [3] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. AppL, 12 (1965), 1-12.
  • [4] F. S. DeBlasi, and A. Lasota, Daniall method in the theory of Aumann-Hukuhara Integral of set-valued functions Atti Acad. Naz. Lincei Rendiconti Ser 8, 45 (1968), 252-256.
  • [5] F. S. DeBlasi, Characterization of the integral of set-valued functions, Atti Acad. Naz. Lincei Rendicoyi Ser. 8, 46 (1969), 154-157.
  • [6] G. Debreu, Integration of correspondences, Proc. Fifth Berkeley Symp. Math. Stat. and Prob., Vol. II, Univ. Calif. Press, (1967), 351-372.
  • [7] M. Hukuhara, Integration des applications measurables dont la valeures compact convexe, Funk. Ekvac, 10 (1967), 205-223.
  • [8] E. J. McShane, A Riemann-Type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals, Memoirs Amer. Math. Soc, 88 (1969).
  • [9] T. Rockafellar, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl., 28 (1969), 4-25.