Pacific Journal of Mathematics

Adjunctions and comonads in differential algebra.

William F. Keigher

Article information

Source
Pacific J. Math., Volume 59, Number 1 (1975), 99-112.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905501

Mathematical Reviews number (MathSciNet)
MR0392957

Zentralblatt MATH identifier
0327.12104

Subjects
Primary: 12H05: Differential algebra [See also 13Nxx]

Citation

Keigher, William F. Adjunctions and comonads in differential algebra. Pacific J. Math. 59 (1975), no. 1, 99--112. https://projecteuclid.org/euclid.pjm/1102905501


Export citation

References

  • [1] P. Blum, Complete models of differential fields, Trans. Amer. Math. Soc, 137 (1969), 309-325.
  • [2] N. Bourbaki, Algebre Commutative, Elements de Mathematique, Vol. 27, Hermann, Paris, 1961.
  • [3] H. Gorman, Radicalregularity in differentialrings, Canad. J. Math., 23 (1971), 197-201.
  • [4] A. Grothendieck and J. Dieudonne, Elements de Geometrie Algebrique I, Springer- Verlag, Berlin, 1971.
  • [5] I. Kaplansky, An introductionto differentialalgebra, Actualites Sci. Indust., 1251 (1957), 9-63.
  • [6] P. Johnstone, Adjointliftingtheorems for categories of algebras, to appear in Bull. London Math. Soc.
  • [7] W. Keigher, Symmetricmonoidal comonads and differential algebra, to appear.
  • [8] E. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.
  • [9] S. Mac Lane, Categories for the WorkingMathematician,Graduate Texts in Mathematics 5, Springer-Verlag, New York, 1971.
  • [10] J.-P. Meyer, Induced functors on categories of algebras, to appear in Math. Z.
  • [11] B. Mitchell, Theory of Categories, Academic Press, New York, 1965.
  • [12] H. Schubert, Kategorien II, Springer-Verlag, Berlin, 1970.
  • [13] R. Street, Formal theory of monads, J. Pure Appl. Algebra, 2 (1971), 149-168.