Pacific Journal of Mathematics

Weighted Sidon sets.

J. W. Sanders

Article information

Source
Pacific J. Math., Volume 63, Number 1 (1976), 255-279.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102867584

Mathematical Reviews number (MathSciNet)
MR0405001

Zentralblatt MATH identifier
0331.43011

Subjects
Primary: 43A46: Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.)
Secondary: 42A44

Citation

Sanders, J. W. Weighted Sidon sets. Pacific J. Math. 63 (1976), no. 1, 255--279. https://projecteuclid.org/euclid.pjm/1102867584


Export citation

References

  • [1] R. E. Edwards, Changing signs of Fourier coefficients. Pacific J. Math., 15 (1965), 463-475.
  • [2] R. E. Edwards, Fourier Series. A Modern Introduction, I and II, Holt, Rinehart and Winston Inc., New York, 1967.
  • [3] R. E. Edwards,E. Hewitt and K. A. Ross, Lacunarityforcompact groups I, Indiana Univ. Math. J., 21 (1972), 787-806.
  • [4] R. E. Edwards and K. A. Ross, p-Sidon sets, J. Functional Analysis, 15 (1974), 404-427.
  • [5] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann., 97 (1927), 159-209.
  • [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer-Verlag, Berlin, 1963 and 1970.
  • [7] Y. Katznelson, An Introductionto Harmonic Analysis, John Wiley and Sons Inc., New York, 1968.
  • [8] G. Kthe, Topological Vector Spaces I, Springer-Verlag, Berlin, 1969.
  • [9] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-227.
  • [10] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
  • [11] J. W. Sanders, Some lacunaryand random Fourier series, Ph. D. Dissertation, Australian National University, January, 1975.
  • [12] J. W. Sanders, Unbounded operators and random Fourier series, Math. Proc. Cambridge Philos. Soc, to appear.
  • [13] N. Th. Varopoulos, Sidon sets in Rn, Math. Scand., 27 (1970), 39-49.