Pacific Journal of Mathematics

The structure of standard $C^*$-algebras and their representations.

Wai Mee Ching

Article information

Source
Pacific J. Math., Volume 67, Number 1 (1976), 131-153.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102817669

Mathematical Reviews number (MathSciNet)
MR0428049

Zentralblatt MATH identifier
0339.46040

Subjects
Primary: 46L05: General theory of $C^*$-algebras

Citation

Ching, Wai Mee. The structure of standard $C^*$-algebras and their representations. Pacific J. Math. 67 (1976), no. 1, 131--153. https://projecteuclid.org/euclid.pjm/1102817669


Export citation

References

  • [1] C. Akemann, A Gelfand representation theory for C*-algebras, Pacific J. Math., 39 (1971), 1-11.
  • [2] S. Anastasio and P. Willig, Structure of Factors, Arithmetic Press, New York, 1974.
  • [3] H. Behncke and W. Bos, A class of C*-algebras,Proc. Amer. Math. Soc, 40(1973), 128-134.
  • [4] H. Behncke, F. Krau/3 and H. Leptin, C*-algebrem mit geordneten Ideal Folgen, Functional Analysis, 1O (1972), 204-211.
  • [5] S. Berberian, Baer *-rings, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
  • [6] F. Bonsall and J. Duncan, Completed Normed Algebras, Springer-Verlag, Berlin- Heidelberg-New York, 1973.
  • [7] N. Bourbaki, Topologie Generate, Chap. I, Hermann, Paris, 1958.
  • [8] J. Calkin, Two-sided idaals and congruences in the ring of bounded operators in Hilbert space, Ann. Math., 42 (1941), 839-873.
  • [9] W. Ching, A continuumof non-isomorphic non-hyper finite factors, Comm. Pure Appl. Math., 23 (1970), 921-937.
  • [10] J. Dauns, The primitive ideal space of a C*-algebra, Canad. J. Math., 26 (1974), 42-49.
  • [11] J. Dauns and K. Hofmann, Representationsof rings by sections, Memoir Amer. Math. Soc, 83 (1968), 180.
  • [12] J. Dixmier, Sur les C*-algebres,Bull. Soc. Math. France, 89 (1960), 95-112.
  • [13] J. Dixmier,Les C*-algebreset leurs representations, Gauthier-Villars, Paris, 1964.
  • [14] J. Dixmier and A. Douady, Champs continus d'espaces hilbertiens et de C*-algebres, Bull. Soc. Math. France, 91 (1963), 227-284.
  • [15] G. Emch, Algebraic Methods in StatisticalMechanics and Quantum Field Theory, Wiley-Interscience, New York, 1972.
  • [16] J. Fell, The dual spaces of C*-algebras, Trans. Amer. Math. Soc, 94 (1960), 365-405.
  • [17] J. Fell,The structure of algebras of operator fields, Acta Math., 106 (1961), 233-280.
  • [18] I. Gelfand and M. Naimark, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sb., 12 (1943), 197-213.
  • [19] J. Glimm, A Stone-Weierstrass theorem forC*-algebras, Ann. Math., 72 (1960), 216-244.
  • [20] R. Godement, Sur la theorie des representations unitaires, Ann. Math., 53 (1951), 68-124.
  • [21] H. Halpern, Irreducible module homomorphisms of a von Neumannalgebra into its center, Trans. Amer. Math. Soc, 140 (1969), 195-221.
  • [22] N. Jacobson, Structureof rings, Amer. Math. Soc Colloq. Publ. no. 37, Providence, 1956.
  • [23] I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc, 7O (1950), 219-255.
  • [24] I. Kaplansky, Projections in Banach algebras, Ann. Math., 53 (1951), 235-249.
  • [25] E. Lance, Notes on the Glimm-SakaiTheorem, University of Newcastle upon Tyne, 1971.
  • [26] D. McDuff, Uncountably many W-factors, Ann. Math., 90 (1969), 372-377.
  • [27] J. von Neumann, On rings of operators'. Reduction theory, Ann. Math., 50(1949), 401-485.
  • [28] R. Powers, Representations of uniformlyhyperfinite algebras and their associated von Neumann rings, Ann. Math., 8 (1967), 138-171.
  • [29] C. Rickart, General Theory of Banach Algebras, van Nostand, Princeton, 1960.
  • [30] S. Sakai, C*-Algebras and W*-Algebras, Springer-Verlag,Berlin-Heidelberg-New York, 1971.
  • [31] H. Takemoto, On a characterizationof AW*-modulesand a representation of Gelfand type of non-commutativeoperator algebras, Michigan J. Math., 20 (1973), 115-127.