Pacific Journal of Mathematics

Stable isomorphism of hereditary subalgebras of $C^*$-algebras.

Lawrence G. Brown

Article information

Source
Pacific J. Math., Volume 71, Number 2 (1977), 335-348.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102811431

Mathematical Reviews number (MathSciNet)
MR0454645

Zentralblatt MATH identifier
0362.46042

Subjects
Primary: 46L05: General theory of $C^*$-algebras

Citation

Brown, Lawrence G. Stable isomorphism of hereditary subalgebras of $C^*$-algebras. Pacific J. Math. 71 (1977), no. 2, 335--348. https://projecteuclid.org/euclid.pjm/1102811431


Export citation

References

  • [1] J. Aarnes andR. V. Kadison, Pure states and approximateidentities,Proc. Amer. Math. Soc, 21 (1969), 749-752.
  • [2] C. A. Akemann, Left ideal structure of C*-algebras, J. Functional Analysis, 6 (1970), 305-317.
  • [3] C. A. Akemann, G.K. Pedersen, andJ. Tomiyama, Multipliers of'C*'-algebras, J. Functional Analysis, 13 (1973), 277-301.
  • [4] B. Blackadar, Infinite tensor products of C*-algebras, preprint.
  • [5] L. G.Brown, Extensions and the structure of C*-algebras, Symp. Mat., 20 (1976), 539-566. 6# 1R. G. Douglas and P. A. Fillmore, Extensions of C*-algebras and K- homology, Ann. Math., 105 (1977), 265-324.
  • [1p] Green andM.A. Rieffel, Stable isomorphism andstrong Morita equiva-
  • [8] R. C. Busby, Double centralizers and extensions of C*-algebras,Trans. Amer. Math. Soc, 132 (1968), 79-99.
  • [9] M. D. Choi and E. A. Effros, The completely positive lifting problem for C*-algebras, Ann. Math., 104 (1976), 585-609.
  • [10] J. Dixmier, Les C*-algebres et Leurs Representations, Gauthier-Villars, Paris, 1964.
  • [11] J. Dixmier, Points separes dans le spectre d'une C*-algebre,Acta Sci. Math., (Szeged) 22 (1961), 115-128.
  • [12] J. Dixmier and A. Douady, Champs continus d'espaces hilbertiens et de C*-algebres, Bull. Soc. Math. France, 91 (1963), 227-284.
  • [13] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1 (1951), 353-367.
  • [14] G. A. Elliott and D. Olesen, A simple proof of the Dauns-Hofmanntheorem, Math. Scand., 34 (1974), 231-234.
  • [15] C. Lance, On nuclear C*'-algebras, J. Functional Analysis, 12 (1973), 157-176.
  • [16] J. Tomiyama, Applications of a Fubini type theorem to the tensor products of C*- algebras, Thoku Math. J., 19 (1967), 213-226.
  • [17] D. Voiculescu, A non-commutativeWeyl-von Neumann theorem, Rev. Roum. Math., 21 (1976), 97-113.