Pacific Journal of Mathematics

Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces.

Joseph Neisendorfer

Article information

Source
Pacific J. Math., Volume 74, Number 2 (1978), 429-460.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102810284

Mathematical Reviews number (MathSciNet)
MR494641

Zentralblatt MATH identifier
0386.55016

Subjects
Primary: 55P62: Rational homotopy theory
Secondary: 55P65: Homotopy functors 55U35: Abstract and axiomatic homotopy theory

Citation

Neisendorfer, Joseph. Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces. Pacific J. Math. 74 (1978), no. 2, 429--460. https://projecteuclid.org/euclid.pjm/1102810284


Export citation

References

  • [1] J. F. Adams, On the cobar construction,Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 409-412.
  • [2] A. K. Bousield and V. K. A. M. Gugenheim, On PL deRham theory and rational homotopy type, (preprint).
  • [3] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions andLocalizations, Berlin, Heidelburg, New York: Springer-Verlag, 1972.
  • [4] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kdhler manifolds,Invent. Math., 29 (1975), 245-274.
  • [5] S. Eilenberg and J. C. Moore, Foundations of relative homological algebra, Amer. Math. Soc. Memoirs, 55 (1965).
  • [6] S. Eilenberg and J. C. Moore, Homology and fibrations I., Comment. Math. Helv., 40 (1966), 199-236.
  • [7] S. Eilenberg and J. C. Moore,Limits and spectral sequences, Topology, 1 (1962), 1-23.
  • [8] E. Friedlander, P. A. Griffiths, and J. Morgan, Homotopy theory anddifferential forms, Seminorio di Geometria, Firenze, 1972 (mimeographed).
  • [9] P. Gabriel and M. Zisman, Calculus of Fractionsand Homotopy Theory, Berlin,
  • [10] D. Husemoller, J. C. Moore, and J. Stasheff, Differentialhomological algebra and homogeneous spaces, J. Algebra, 5 (1974), 113-185.
  • [11] J. M. Lemaire, Algebres Connexes et Homologie des Espaces de Lacets, Berlin, Heidelburg, New York: Springer-Verlag, 1974.
  • [12] M. Lazard, Sur les groupes nilpotentset les anneaux de Lie, Ann. Ec. Norm. Sup., 71 (1954), 101-190.
  • [13] A. L. Malcev, Nilpotent groups without torsion, Izvest. Akad. Nauk SSSR, ser. Math., 13 (1949), 201-212.
  • [14] T. Miller, Minimal Lie algebras in rational homotopy theory, Universityof Notre Dame dissertation, 1976.
  • [15] T. Miller and J. Neisendorfer, Formal and coformal spaces, (preprint).
  • [16] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math., 81 (1965), 211-264.
  • [17] J. C. Moore, Differentialhomological algebra, Actes, Congres, Intern. Math., 1970. Tome 1, 335-339. g# 1Some properties of the loop homology of commutative coalgebras, in the Steenrod algebra and its applications, edited by Frank Peterson. Berlin, Heidelburg, New York: Springer-Verlag, 1970.
  • [19] J. C. Moore,What it means for a coalgebra to be simply connected, (preprint).
  • [20] J. Neisendorfer, Rational homotopy groups of complete intersections, (preprint).
  • [21] J. Neisendorfer and L. Taylor. Dolbeault homotopy theory, (preprint).
  • [22] D. Quillen, Homotopical Algebra, Berlin, Heidelburg, New York: Springer-Verlag, 1967.
  • [23] D. Quillen, Rational homotopy theory, Ann. of Math., 90 (1969),205-295.
  • [24] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc, 129 (1967), 58-93.
  • [25] L. Smith, Lectures on the Eilenberg-Moore Spectral Sequence, Berlin, Heidelburg, New York: Springer-Verlag, 1970.
  • [26] D. Sullivan, Infinitesimalcomputations in topology, (preprint).
  • [27] D. Sullivan, Topology of manifolds and differential forms, Proceedings of Conference on Manifolds, Tokyo, 1973.
  • [28] R. G. Swan, Thorn's theory of differential forms of simplicial sets, Topology, 14 (1975), 271-273.
  • [29] H. Weyl, The Classical Groups, Princeton, 1946.
  • [30] G. W. Whitlhead, On mappings into group-like spaces, Comment. Math., Helv. 28 (1954), 320-328.