Pacific Journal of Mathematics
- Pacific J. Math.
- Volume 74, Number 2 (1978), 429-460.
Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces.
Full-text: Open access
Article information
Source
Pacific J. Math., Volume 74, Number 2 (1978), 429-460.
Dates
First available in Project Euclid: 8 December 2004
Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102810284
Mathematical Reviews number (MathSciNet)
MR494641
Zentralblatt MATH identifier
0386.55016
Subjects
Primary: 55P62: Rational homotopy theory
Secondary: 55P65: Homotopy functors 55U35: Abstract and axiomatic homotopy theory
Citation
Neisendorfer, Joseph. Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces. Pacific J. Math. 74 (1978), no. 2, 429--460. https://projecteuclid.org/euclid.pjm/1102810284
References
- [1] J. F. Adams, On the cobar construction,Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 409-412.
- [2] A. K. Bousield and V. K. A. M. Gugenheim, On PL deRham theory and rational homotopy type, (preprint).
- [3] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions andLocalizations, Berlin, Heidelburg, New York: Springer-Verlag, 1972.
- [4] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kdhler manifolds,Invent. Math., 29 (1975), 245-274.
- [5] S. Eilenberg and J. C. Moore, Foundations of relative homological algebra, Amer. Math. Soc. Memoirs, 55 (1965).
- [6] S. Eilenberg and J. C. Moore, Homology and fibrations I., Comment. Math. Helv., 40 (1966), 199-236.Mathematical Reviews (MathSciNet): MR34:3579
- [7] S. Eilenberg and J. C. Moore,Limits and spectral sequences, Topology, 1 (1962), 1-23.
- [8] E. Friedlander, P. A. Griffiths, and J. Morgan, Homotopy theory anddifferential forms, Seminorio di Geometria, Firenze, 1972 (mimeographed).
- [9] P. Gabriel and M. Zisman, Calculus of Fractionsand Homotopy Theory, Berlin,
- [10] D. Husemoller, J. C. Moore, and J. Stasheff, Differentialhomological algebra and homogeneous spaces, J. Algebra, 5 (1974), 113-185.
- [11] J. M. Lemaire, Algebres Connexes et Homologie des Espaces de Lacets, Berlin, Heidelburg, New York: Springer-Verlag, 1974.
- [12] M. Lazard, Sur les groupes nilpotentset les anneaux de Lie, Ann. Ec. Norm. Sup., 71 (1954), 101-190.
- [13] A. L. Malcev, Nilpotent groups without torsion, Izvest. Akad. Nauk SSSR, ser. Math., 13 (1949), 201-212.
- [14] T. Miller, Minimal Lie algebras in rational homotopy theory, Universityof Notre Dame dissertation, 1976.
- [15] T. Miller and J. Neisendorfer, Formal and coformal spaces, (preprint).
- [16] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math., 81 (1965), 211-264.
- [17] J. C. Moore, Differentialhomological algebra, Actes, Congres, Intern. Math., 1970. Tome 1, 335-339. g# 1Some properties of the loop homology of commutative coalgebras, in the Steenrod algebra and its applications, edited by Frank Peterson. Berlin, Heidelburg, New York: Springer-Verlag, 1970.
- [19] J. C. Moore,What it means for a coalgebra to be simply connected, (preprint).
- [20] J. Neisendorfer, Rational homotopy groups of complete intersections, (preprint).
- [21] J. Neisendorfer and L. Taylor. Dolbeault homotopy theory, (preprint).
- [22] D. Quillen, Homotopical Algebra, Berlin, Heidelburg, New York: Springer-Verlag, 1967.
- [23] D. Quillen, Rational homotopy theory, Ann. of Math., 90 (1969),205-295.
- [24] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc, 129 (1967), 58-93.
- [25] L. Smith, Lectures on the Eilenberg-Moore Spectral Sequence, Berlin, Heidelburg, New York: Springer-Verlag, 1970.
- [26] D. Sullivan, Infinitesimalcomputations in topology, (preprint).Zentralblatt MATH: 0374.57002
- [27] D. Sullivan, Topology of manifolds and differential forms, Proceedings of Conference on Manifolds, Tokyo, 1973.
- [28] R. G. Swan, Thorn's theory of differential forms of simplicial sets, Topology, 14 (1975), 271-273.
- [29] H. Weyl, The Classical Groups, Princeton, 1946.
- [30] G. W. Whitlhead, On mappings into group-like spaces, Comment. Math., Helv. 28 (1954), 320-328.
Pacific Journal of Mathematics, A Non-profit Corporation

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Homotopy Lie algebra of classifying spaces for hyperbolic
coformal 2-cones
Gatsinzi, J.-B., Homology, Homotopy and Applications, 2004 - Graphs associated with nilpotent Lie algebras of maximal rank
Díaz, Eduardo, Fernández-Mateos, Rafael, Fernández-Ternero, Desamparados, and Núñez, Juan, Revista Matemática Iberoamericana, 2003 - Structure of the $C^*$-Algebras of Nilpotent Lie Groups
SUDO, Takahiro, Tokyo Journal of Mathematics, 1996
- Homotopy Lie algebra of classifying spaces for hyperbolic
coformal 2-cones
Gatsinzi, J.-B., Homology, Homotopy and Applications, 2004 - Graphs associated with nilpotent Lie algebras of maximal rank
Díaz, Eduardo, Fernández-Mateos, Rafael, Fernández-Ternero, Desamparados, and Núñez, Juan, Revista Matemática Iberoamericana, 2003 - Structure of the $C^*$-Algebras of Nilpotent Lie Groups
SUDO, Takahiro, Tokyo Journal of Mathematics, 1996 - Homotopy nilpotent groups
Biedermann, Georg and Dwyer, William G, Algebraic & Geometric Topology, 2010 - Characteristically nilpotent Lie algebras
Leger, G. and Tôgô, S., Duke Mathematical Journal, 1959 - On derivations of nilpotent Lie algebras
Satô, Terukiyo, Tohoku Mathematical Journal, 1965 - On the nilpotency of rational $\bm{H}$-spaces
KAJI, Shizuo, Journal of the Mathematical Society of Japan, 2005 - A classifying space for commutativity in Lie groups
Adem, Alejandro and Gómez, José, Algebraic & Geometric Topology, 2015 - Algebraic Structures Based on a Classifying Space of a Compact Lie Group
Lee, Dae-Woong, Abstract and Applied Analysis, 2013 - A nilpotent Lie algebra with nilpotent automorphism group
Dyer, Joan L., Bulletin of the American Mathematical Society, 1970
