Pacific Journal of Mathematics

Numerical algorithms for oscillation vectors of second order differential equations including the Euler-Lagrange equation for symmetric tridiagonal matrices.

John Gregory

Article information

Source
Pacific J. Math., Volume 76, Number 2 (1978), 397-406.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102806828

Mathematical Reviews number (MathSciNet)
MR0501942

Zentralblatt MATH identifier
0395.65049

Subjects
Primary: 65L10: Boundary value problems

Citation

Gregory, John. Numerical algorithms for oscillation vectors of second order differential equations including the Euler-Lagrange equation for symmetric tridiagonal matrices. Pacific J. Math. 76 (1978), no. 2, 397--406. https://projecteuclid.org/euclid.pjm/1102806828


Export citation

References

  • [1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in HubertSpaces, Frederick Ungar Publishing Co., New York, 1966.
  • [2] A. R. Gourley and G. A. Watson, Computational Methods for MatrixEigenproblems, John Wiley and Sons, New York, 1973.
  • [3] John Gregory and Franklin Richards, NumericalApproximationfor2mthorder differential systems via splines, Rocky Mountain J. Math., 5, Number 1, Winter (1975), 107-116.
  • [4] John Gregory, An oscillation theory for second-order integral differentialequations, J. Math. Anal. Appl., 47 (1974), 69-77.
  • [5] M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space in the calculus of variations, Pacific J. Math., 1 (1951), 525-582.
  • [6] Francis Scheid, Numerical Analysis, Schaum's Outline Series, 1968.
  • [7] Junior Stein, SingularQuadraticFunctionals,Dissertation, the University of California, Los Angeles, 3971.
  • [8] J.H. Wilkinson and C. Reinsch, Linear Algebra Handbook for Automatic Computing f Vol. II, Springer-Verlag, 1971.