Pacific Journal of Mathematics

$C^{\ast}$-algebras with approximately inner flip.

Edward G. Effros and Jonathan Rosenberg

Article information

Source
Pacific J. Math., Volume 77, Number 2 (1978), 417-443.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102806458

Mathematical Reviews number (MathSciNet)
MR510932

Zentralblatt MATH identifier
0412.46052

Subjects
Primary: 46L05: General theory of $C^*$-algebras

Citation

Effros, Edward G.; Rosenberg, Jonathan. $C^{\ast}$-algebras with approximately inner flip. Pacific J. Math. 77 (1978), no. 2, 417--443. https://projecteuclid.org/euclid.pjm/1102806458


Export citation

References

  • [1] C. Akemann, G. Pedersen, and J. Tomiyama, Derivationsand multipliersof C*- algebras, J. Functional Analysis, 13 (1973), 277-301.
  • [2] W. Arveson, Notes on extensions of C*-algebras, Duke Math. J., 44(1977), 329-355. 3.0. Bratteli, Inductive limits of finite-dimensional C*-algebras, Trans. Amer. Math. Soc, 171 (1972), 195-234.
  • [4] W. Arveson,The center of approximatelyfinite-dimensionalC*-algebras, J. Functional Analysis, 21 (1976), 195-202.
  • [5] J. Bunce and J. Deddens, A familyof simple C*-algebras related to weighted shift operators, J. Functional Analysis, 19 (1975), 13-24.
  • [6] M. Choi and E. Effros, The completely positive liftingproblem for C*-algebras, Ann. of Math., 104 (1976), 585-609.
  • [7] M. Choi and E. Effros, Nuclear C*-algebrasand the approximationproperty, Amer. J. Math., 100 (1978), 61-79.
  • [8] A. Connes, Classification of injective factors, Ann. of Math., 104 (1976), 73-116.
  • [9] J. Dixmier, Les C*-algebreset leurs Representations, 2 ed., Gauthier-Villars, Paris, 1969.
  • [10] J. Dixmier, On some C*-algebras considered by Glimm, J. Functional Analysis, 1 (1967), 182-203.
  • [11] E. Effros, Nuclearityand the C*-algebraic flip, Proc. Conf. on Mathematical Problems in Theoretical Physics, Rome, June 1977, Lecture Notes in Physics, no. 80, Spinger, Berlin, 1978.
  • [12] S. Eilenberg and N. Steenrod, Foundationsof Algebraic Topology, Princeton Uni- versity Press, Princeton, 1952.
  • [13] G. Elliott, On the classification of inductive limits of sequences of finite dimen- sional algebras, J. Algebra, 38 (1976), 29-44.
  • [14] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc, 76 (1960), 318-340.
  • [15] A. Guichardet, Tensor Products of C*-algebras, Part I, Aarhus University Lecture Notes Series No. 12, Aarhus, 1969.
  • [16] P. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc, 76 (1970), 887-933.
  • [17] I. Kaplansky, Rings of Operators, W. A. Benjamin, New York, 1968.
  • [18] D. McDuff, Central sequences and the hyper finite factor, Proc. London Math. Soc, 21 (1970), 443-461.
  • [19] G. Pedersen, Measure theory for C*-algebras I, Math. Scand., 19 (1966), 131-145.
  • [20] F. Thayer, The Weyl-von Neumann theorem for approximately finite C*-algebras, Ind. Univ. Math. J., 24 (1975), 875-877.
  • [21] F. Thayer, Quasi-diagonal C*-algebras,J. Functional Analysis, 25 (1977), 50-57.
  • [22] J. Tomiyama, Applications of Fubini type theorem to the tensor products of C*- algebras, Thoku Math. J., 19 (1967), 213-226.
  • [23] D. Voiculescu, A non-commutativeWeyl-von Neumann theorem, Rev. Roum. Math. Pures et Appl., 21 (1976), 97-113.