Pacific Journal of Mathematics

One-parameter semigroups of isometries into $H^{p}$.

Earl Berkson

Article information

Source
Pacific J. Math., Volume 86, Number 2 (1980), 403-413.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102780462

Mathematical Reviews number (MathSciNet)
MR590552

Zentralblatt MATH identifier
0441.46045

Subjects
Primary: 47D05
Secondary: 30D55 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30] 47B37: Operators on special spaces (weighted shifts, operators on sequence spaces, etc.)

Citation

Berkson, Earl. One-parameter semigroups of isometries into $H^{p}$. Pacific J. Math. 86 (1980), no. 2, 403--413. https://projecteuclid.org/euclid.pjm/1102780462


Export citation

References

  • [1] E. Berkson, R. Kaufman, and H. Porta, M'bius transformationsof the disc and one-parametergroups of isometries of Hp, Trans. Amer. Math. Soc, 199 (1974), 223-239.
  • [2] E. Berkson and H. Porta, Hermitianoperators and one-parametergroups of isometries in Hardy spaces, Trans. Amer. Math. Soc,185 (1973), 331-344.
  • [3] E. Berkson and H. Porta,One parameter groups of isometries on Hardy spaces of the torus, Trans. Amer.. Math. Soc,220 (1976), 373-391.
  • [4] E. Berkson and H. Porta, Semigroups of analytic functions and composition opera- tors, Mich. Math. J., 25 (1978), 101-115.
  • [5] J. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1973.
  • [6] P. Duren, Theory of Hp Spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970.
  • [7] F. Forelli, The isometries of H, Canad. J. Math., 16 (1964), 721-728.