Pacific Journal of Mathematics

Naturally integrable functions.

Lester E. Dubins and David Margolies

Article information

Source
Pacific J. Math., Volume 87, Number 2 (1980), 299-312.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779967

Mathematical Reviews number (MathSciNet)
MR592737

Zentralblatt MATH identifier
0461.28008

Subjects
Primary: 43A07: Means on groups, semigroups, etc.; amenable groups

Citation

Dubins, Lester E.; Margolies, David. Naturally integrable functions. Pacific J. Math. 87 (1980), no. 2, 299--312. https://projecteuclid.org/euclid.pjm/1102779967


Export citation

References

  • [1] S. Banach, Sur ce probleme de measure, Fund. Math., 4 (1923), 7-33.
  • [2] C. Chou, On a conjecture of E. Granirerconcerning the range of aninvariant mean, Proc. Amer. Math. Soc,26 (1970), 105-107.
  • [3] M. Day,Semigroups and amenability, in Semigroups, (Proc. Symp., Wayne State U.), Karl Folley ed., Academic Press, New York, 1969, 5-50.
  • [4] M. Day,Amenable semigroups, Illinois J. Math., 1 (1957), 509-544.
  • [5] L. Dubins, Naturallyintegrable functions, unpublished manuscript, University of California, Berkeley, 1977.
  • [6] B. de Finetti, Probability, Induction, and Statistics, Wiley, New York, 1972.
  • [7] B. de Finetti, Theory of Probability, Vol. 1, Wiley, 1974.
  • [8] E. Folner, On groups with full Banach mean value, Math. Scand., 3 (1955), 243-254.
  • [9] E. Granirer, On left amenable semigroups which admitcountable leftinvariant means I and II, Illinois J. Math., 7 (1963), 32-48, 49-58.
  • [10] E. Granirer, On the range of an invariantmean, Trans. Amer. Math. Soc, 125 (1966), 384-394.
  • [11] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand,1969.
  • [12] G. H. Hardy and E. Wright, An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960.
  • [13] M. Jerison, The set of all generalized limits of bounded sequences, Canad. J. Math., 9 (1957), 79-89.
  • [14] G. Lorentz, A contribution to the theory of divergent sequences, Acta Mathematica, 8O (1948), 167-190.
  • [15] J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math., 13 (1929), 73-116.
  • [16] J. von Neumann,Zum Haarschen Mass in topologischen Gruppen, Comp. Math., 1 (1934).
  • [17] L. Pontriagin, Topological Groups, Princeton University Press, Princeton,1946.
  • [18] R. Snell, The range of invariantmeans on locally compact abelian groups, Canad. Math. Bull., 17 (1974), 567-573.
  • [19] H. Weyl, Nachr. Akad. Wiss. Gttingen, (1914), 235-236.
  • [20] H. Weyl, Math. Ann.,77 (1916), 313-315.
  • [21] K. Witz, Applications of a compactification for bounded operator semigroups, Illinois J. Math., 8 685-696.