Pacific Journal of Mathematics

New explicit formulas for the $n$th derivative of composite functions.

Pavel G. Todorov

Article information

Source
Pacific J. Math., Volume 92, Number 1 (1981), 217-236.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102737515

Mathematical Reviews number (MathSciNet)
MR618059

Zentralblatt MATH identifier
0459.30014

Subjects
Primary: 30D05: Functional equations in the complex domain, iteration and composition of analytic functions [See also 34Mxx, 37Fxx, 39-XX]
Secondary: 26B05: Continuity and differentiation questions 30E99: None of the above, but in this section

Citation

Todorov, Pavel G. New explicit formulas for the $n$th derivative of composite functions. Pacific J. Math. 92 (1981), no. 1, 217--236. https://projecteuclid.org/euclid.pjm/1102737515


Export citation

References

  • [1] J. Bertrand, Traite de calcul dierentiel et de calcul integral {Premiere partie--Calcul differentiel), Gauthier-Villars, Paris, 1864.
  • [2] L. Comtet, Advanced Combinatorics (The Art oj Finite and Infinite Expansions), D. Reidel Publishing Co., Dordrecht-Holland/Boston-U.S.A. 1974.
  • [3] L. Comtet, Polynomes de Bell et formue explicite des derivees successives d'une fonction implicite, C. R. Acad. Sc. Paris, 267-A (1968), 457-460.
  • [4] L. Comtet,Une formule explicite pour les puissances successivesde Voperateur de deriva- tion de Lie, C. R. Acad. Sc Paris, 276-A (1973), 165-168.
  • [5] Faa di Bruno, Sullo sviluppo delle funzioni,Annali di Scienze Matematiche et Fisiche di Tortoloni, 6 (1855), 479-480.
  • [6] Faa di Bruno, Note sur une nouvelle formule de calcul difterentiel, Quarterly J. Math., 1 (1857), 359-360.
  • [7] H. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79 (1972), 44-51.
  • [8] P. Henrici,Appliedand Computational Complex Analysis, ed. J. Wiley and Sons, Inc., New York-London-Sydney-Tor onto, Vol. 1, 1974.
  • [9] V. F. Ivanoff, Problem 4782, Amer. Math. Monthly, 65 (1958), 212.
  • [10] Charles Jordan, Calculus of Finite Differencse, 3rd ed., Chelsea Publishing Co., Inc., New York 1965, (repr. 1979).
  • [11] F. G. Kravchenko, Representations of roots of polynomial in the form of power series and infinite determinants, Vychislitenaya i prikladnaya matematika, Izdatestvo Kievskogo Universiteta, Kiev, No. 4 (1967), 70-89 (Russian: Summary in English).
  • [12] M. McKiernan, On the nth derivative of composite functions, Amer. Math. Monthly, 63 (1956), 331-333.
  • [13] A. M. Ostrowski, Solution of Equations and Systems of Equations, 2nd ed., Academic Press, New York, 1966.
  • [14] D. Pandres, On higher ordered differentiation, Amer. Math. Monthly, 64 (1957), 566-572.
  • [15] J. Riordan, Derivatives of composite functions, Bull. Amer. Math. Soc, 52 (1946), 664-667.
  • [16] J. Riordan, An Introduction to Combinatorial Analysis, ed. J. Wiley and Sons, Inc., New York-London, 1958.
  • [17] E. Stamm, A Contribution to Differential Calculus in Banach Spaces: The Combina- torial Mechanisms of Higher Derivatives, ed. Forschungsinstitut fur Mathematik ETH Zurich and Department of Mathematics, University of Toronto, August, 1973.
  • [18] P. G. Todorov, New explicit formulas for the coefficients of p-symmetricfunctions, Notices Amer. Math. Soc, 25 No. 6 (1978). A-592, Abstract 78T-B186.
  • [19] P. G. Todorov, New explicit formulas for the coefficients of p-symmetric functions, Proc. Amer. Math. Soc, 77 No. 1 (1979), 81-86.
  • [20] P. G. Todorov, New explicit formulas for the nth derivative of composite functions, Notices Amer. Math. Soc, 25, No. 7 (1978), A-699, Abstract 78T-B199.
  • [21] A. B. Turowicz, Sur les derivees d'ordre superieur d'une fonction inverse, Colloquium Mathematicum, 7, No. 1 (1959), 83-87.