Pacific Journal of Mathematics

Monodromy and invariants of elliptic surfaces.

Peter F. Stiller

Article information

Source
Pacific J. Math., Volume 92, Number 2 (1981), 433-452.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102736803

Mathematical Reviews number (MathSciNet)
MR618076

Zentralblatt MATH identifier
0475.14030

Subjects
Primary: 14J15: Moduli, classification: analytic theory; relations with modular forms [See also 32G13]
Secondary: 14D05: Structure of families (Picard-Lefschetz, monodromy, etc.) 32G20: Period matrices, variation of Hodge structure; degenerations [See also 14D05, 14D07, 14K30]

Citation

Stiller, Peter F. Monodromy and invariants of elliptic surfaces. Pacific J. Math. 92 (1981), no. 2, 433--452. https://projecteuclid.org/euclid.pjm/1102736803


Export citation

References

  • [1] P. Deligne, Equations Differentielles a Points Singuliers Reguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
  • [2] P. Griffiths, Differential Equations on Algebraic Varieties, Princeton Lectures, un- published.
  • [3] E. Ince, Ordinary Differential Equations, Dover Publications, New York, 1956.
  • [4] N. Katz and T. Oda, On the differentiation of De Rham cohomology classes with respect to parameters, J. Math Kyoto Univ., 8-2 (1968), 199-213.
  • [5] K, Kodaira, On compact analytic surfaces II, Ann. Math., 77 (1963), 563-626.
  • [6] K, On compact analytic surfaces HI, Ann. Math., 78 (1963), 1-40.
  • [7] E, Picard, Traite D'Analyse, Tome III, Gauthier-Villars, Paris, 1908.
  • [8] H. Poincare, Sur les Groupes des Equations Lineaires, Oeuvres, Tome II, Gauthier- Villars, Paris, 1916, 300-401.
  • [9] A. Robert, Elliptic Curves, Lecture Notes in Math., 326, Springer-Verlag, Berlin-Hei- delberg-New York, 1970.
  • [10] T. Sasai, Monodromy representations of homology of certain elliptic surfaces, J. Math. Soc. Japan, Vol. 26, No. 2, (1974), 296-305.
  • [11] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, Vol. 24 No. 1, (1972), 20-59.
  • [12] P. Stiller, Differential equations associated to elliptic surfaces, to appear.
  • [13] P. Stiller, Elliptic curves over function fields and the Picard number, to appear.
  • [14] A. Weil, Generalization des functions abeliennes, J. Math. Pures , Appl., 17 (1938), 47-87.