Pacific Journal of Mathematics

Matrix correspondences of plane partitions.

Emden R. Gansner

Article information

Source
Pacific J. Math., Volume 92, Number 2 (1981), 295-315.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102736794

Mathematical Reviews number (MathSciNet)
MR618067

Zentralblatt MATH identifier
0459.05012

Subjects
Primary: 05A17: Partitions of integers [See also 11P81, 11P82, 11P83]
Secondary: 05A05: Permutations, words, matrices 05A15: Exact enumeration problems, generating functions [See also 33Cxx, 33Dxx] 20B25: Finite automorphism groups of algebraic, geometric, or combinatorial structures [See also 05Bxx, 12F10, 20G40, 20H30, 51-XX]

Citation

Gansner, Emden R. Matrix correspondences of plane partitions. Pacific J. Math. 92 (1981), no. 2, 295--315. https://projecteuclid.org/euclid.pjm/1102736794


Export citation

References

  • [1] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
  • [2] E. A. Bender and D. E. Knuth, Enumerationof plane partitions, J. Combinatorial Theory, Ser. A, 13 (1972), 40-54.
  • [3] G. Birkhoff, Lattice Theory, 3rd. ed., Amer. Math. So, Providence, RI, 1967.
  • [4] W. H. Burge, Four correspondences between graphs and generalized Young tableaux, J. Combinatorial Theory, Ser. A, 17 (1974), 12-30.
  • [5] P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall,Engle- wood Cliffs, NJ, 1973.
  • [6] G. Frobenius, Uber die Charaktere der symmetrischen Gruppe, S.-B. Preuss. Akad. Wiss. (Berlin, 1900), 516-534.
  • [7] E. R. Gansner, Matrix correspondences and the enumeration of plane partitions, Ph.D. Dissertation, M.I.T., February, 1978.
  • [8] E. R. Gansner, On the equality of two plane paftition correspondences, Discrete Math., 30 (1980), 121-132.
  • [9] E. R. Gansner, The Hilhnan-Grassl correspondence and the enumeration of reverse plane partitions, J. Combinatorial Theory Ser. A, to appear.
  • [10] E. R. Gansner, The enumeration of plane partitions via the Burge correspondence, preprint.
  • [11] C. Greene, An extension of Schensted's theorem, Advances in Math., 14 (1974), 254- 265.
  • [12] C. Greene, Some order-theoretic properties of the Robinson-Schensted correspondence, in Combinatoire et Representation du Groupe Syrnettique", D. Foata, ed., Lecture Notes in Mathematics No. 579, Springer-Verlag, Berlin, 1977, 114-120.
  • [13] A. P. Hillman and R. M. Grassl, Reverse plane partitions and tableaux hook numbers, J. Combinatorial Theory, Ser. A, 21 (1976), 216-221.
  • [14] A. P. Hillman and R. M. Grassl,Functionx on tableaus frames, Discrete Math., 25 (1979), 245-255. 15-D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math., 34 (1970), 709-727.
  • [16] A. P. Hillman and R. M. Grassl, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, Mass., 1973.
  • [17] C. L. Liu, Topics in Combinatorial Mathematics, Math. Assoc. Amer.,Washington, DC, 1972.
  • [18] P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge UniversityPress, 1916; reprinted by Chelsea, New York, 1960.
  • [19] G. de B. Robinson, On the representations of the symmetric group, Amer. J. Math., 60 (1938), 745-760.
  • [20] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math., 13 (1961), 179-191.
  • [21] M.-P.Schiitzenberger, Quelques remarques sur une construction de Schensted, Math. Scand., 12 (1963), 117-128.
  • [22] M.-P.Schiitzenberger, Promotion des morphismes d'ensembles ordonees, Discrete Math., 2 (1972), 73-94.
  • [23] R. P. Stanley, Theory and applications of plane partitions I, II, Studies in Applied Math., 50 (1971), 167-188, 259-279.
  • [24] G. P. Thomas, On a construction of Schiitzenberger, Discrete Math., 17 (1977), 107-118.
  • [25] G. P. Thomas,On Schensted's construction and the multiplication of Schur functions, Advances in Math., 30 (1978), 8-32.