Pacific Journal of Mathematics
- Pacific J. Math.
- Volume 103, Number 1 (1982), 163-203.
A bigger Brauer group.
Full-text: Open access
Article information
Source
Pacific J. Math., Volume 103, Number 1 (1982), 163-203.
Dates
First available in Project Euclid: 8 December 2004
Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102724219
Mathematical Reviews number (MathSciNet)
MR687968
Zentralblatt MATH identifier
0528.13007
Subjects
Primary: 13A20
Secondary: 46J05: General theory of commutative topological algebras
Citation
Taylor, Joseph L. A bigger Brauer group. Pacific J. Math. 103 (1982), no. 1, 163--203. https://projecteuclid.org/euclid.pjm/1102724219
References
- [1] R. Arens, The group of invertble elements of a commutativeBanach algebra, Studia Math., (1963), 21-23.
- [2] M. Auslander and 0. Goldman, The Brauer group of a commutativering, Trans. Amer. Math. Soc, 97 (1960), 367-409.
- [3] G. Azumaya, On maximallycentral algebras, Nagoya Math. J., 2 (1951), 119-150.
- [4] H. Bass, Algebraic K-theory, Benjamin, New York, 1968.Mathematical Reviews (MathSciNet): MR40:2736
- [5] L. Bungart, On analytic fiber bundles-!, holomorphic fiber bundles withinfinite dimensional fibers, Topology, 7 (1968), 55-68.
- [6] I. Craw, I. Raeburn and J. L. Taylor, Automorphisms of Banach Azumaya algebras, Amer. J. Math., to appear.Mathematical Reviews (MathSciNet): MR85c:46055
- [7] I. Craw and S. Ross, Protective separable algebras over a commutativeBanach algebra.
- [8] F. Demeyer and E. Ingraham, Separable algebras over commutative rings, Springer- Verlag Lectures Notes in Mathematics, 181 (1971).
- [9] J. Dixmier and A. Douady, Champs continusd'espaces Hilbertienset C*-algebres, Bull. Soc. Math. France, 91 (1963), 227-284.
- [10] O. Forster, FunctiontheoretischeHilfsmittelim der theorie derkommutativen Banach algebren, Uber. Deutsch, Math.-Verein, 76 (1974), 1-17.
- [11] R. Godement, Topologie algebrique et theorie des faisceaux,Hermann, Paris, 1958.
- [12] A. Grothendieck, he group de Brauer I:algebras dyAzumayaetinterpretations diverses, Seminaires Bourbaki, Expose, 290 (1964/65).
- [13] R. C. Gunning and H. Rossi, AnalyticFunctionsof Several Complex Variables, Prentice Hall, Englewood Cliffs, N. J., 1965.Mathematical Reviews (MathSciNet): MR31:4927
- [14] R. Harvey and R. O. Wells, Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc, 136 (1969), 509-516.
- [15] M. A. Knus, Algebres dfAzumayaet modules projectifs,Comm. Helv. Math., 45 (1970), 372-383.
- [16] N. H. Kuiper, The homotopy type of the unitarygroup of Hilbert space, Topology, 3 (1965), 19-30.
- [17] H. Matsumara, Commutative Algebra, Benjamin, New York, 1970.Mathematical Reviews (MathSciNet): MR42:1813
- [18] M. Nagata, Local Rings, Interscience, New York, 1962.Mathematical Reviews (MathSciNet): MR27:5790
- [19] I. Raeburn, The relationshipbetween a commutativeBanachalgebra andits maximal ideal space, J. Functional Anal., 25 (1977), 366-390.
- [20] A. Rosenberg and D. Zelinsky, Automorphismsof separable algebras, Pacific J. Math., 11 (1961), 1109-1117.
- [21] H. L. Royden, Function algebras, Bull. Amer. Math. Soc, 69 (1963), 281-298.Mathematical Reviews (MathSciNet): MR26:6817
- [22] G. E. Shilov, On decomposition of a commutativenormed ring in a direct sum
- [23] Y. T. Siu, Noetherianess of rings of holomorphic functionson Stein compact subsets, Proc. Amer. Math. Soc, 21 (1969), 483-489.Mathematical Reviews (MathSciNet): MR40:404
- [24] J. L. Taylor, Topological invariantsof the maximal ideal space of Banach algebra, Adv. in Math., 19 (1976), 149-209.
- [25] J. L. Taylor, Twisted products of Banach algebras and Zrd Cech cohomology, in K- theory and operator algebras, Springer-Verlag Lecture Notes in Mathematics, 575 (1977), 157-174.
Pacific Journal of Mathematics, A Non-profit Corporation

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The Brauer group of polynomial rings.
DeMeyer, F. R., Pacific Journal of Mathematics, 1975 - On the Brauer group of $Z$.
Morris, Robert A., Pacific Journal of Mathematics, 1971 - The Schur subgroup of the Brauer group.
Pendergrass, J. William, Pacific Journal of Mathematics, 1977
- The Brauer group of polynomial rings.
DeMeyer, F. R., Pacific Journal of Mathematics, 1975 - On the Brauer group of $Z$.
Morris, Robert A., Pacific Journal of Mathematics, 1971 - The Schur subgroup of the Brauer group.
Pendergrass, J. William, Pacific Journal of Mathematics, 1977 - On the Brauer group and quotient singularities
Ford, Timothy J., Illinois Journal of Mathematics, 1991 - Chapter III. Brauer Group
Anthony W. Knapp, Advanced Algebra, Digital Second Edition (East Setauket, NY: Anthony W. Knapp, 2016), 2016 - Brauer groups of Quot schemes
Biswas, Indranil, Dhillon, Ajneet, and Hurtubise, Jacques, The Michigan Mathematical Journal, 2015 - Purity for the Brauer group
Česnavičius, Kęstutis, Duke Mathematical Journal, 2019 - Equivariant group cohomology and Brauer group
Cegarra, A. M. and Garzón, A.R., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2003 - Cohomology in the finite topology and Brauer groups.
Hoobler, Raymond T., Pacific Journal of Mathematics, 1972 - The bigger Brauer group and étale cohomology.
Raeburn, Iain and Taylor, Joseph L., Pacific Journal of Mathematics, 1985
