Pacific Journal of Mathematics

The sextic period polynomial.

D. H. Lehmer and Emma Lehmer

Article information

Source
Pacific J. Math., Volume 111, Number 2 (1984), 341-355.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102710575

Mathematical Reviews number (MathSciNet)
MR734860

Zentralblatt MATH identifier
0539.12003

Subjects
Primary: 11L03: Trigonometric and exponential sums, general
Secondary: 11T06: Polynomials

Citation

Lehmer, D. H.; Lehmer, Emma. The sextic period polynomial. Pacific J. Math. 111 (1984), no. 2, 341--355. https://projecteuclid.org/euclid.pjm/1102710575


Export citation

References

  • [1] F. S. Carey, Notes on the division of the circle, Quart. Applied Math., 26 (1893), 322-371.
  • [2] Allan Cunningham, Quadratic Partitions, London, 1904, 266 p, Quadratic and Linear Tables, London, 1927, p. 1-87.
  • [3] L. E. Dickson, Cyclotomy, higher congruencesand Waring'sproblem, Amer. J. Math., 57 (1935), 408-410.
  • [4] Ronald J. Evans, Period polynomials for generalized cyclotomic periods, Manuscripta Math., 40 (1982), 217-243.
  • [5] E. E. Kummer, Ueber die Divisoren gewisser Formen der Zahlen, welche aus der Theorie der Kreistheilung enstehen, J. fur Math., 30 (1846), 107-116, Collected Papers, v. l,pp. 193-202, Springer-Verlag,N.Y., 1975.
  • [6] D. H. and Emma Lehmer, Multiple sums of cyclotomic numbers, Utilitas Mathe- m a t i c a l (1983), 223-239.
  • [7] D. H. and Emma Lehmer, The cyclotomy of hyper-Kloosterman sums, Acta Arith., 14 (1968), 89-111.
  • [8] Thomas Storer, Cyclotomy and Difference Sets, lectures in Advanced Math. Mark- ham Publ. Co. Chicago, 1967.
  • [9] J. J. Sylvester, On certain ternary cubic equations, Amer. J. Math., 2 (1879), 357-381, Collected papers, v. 3, pp. 325-339, p. 314 Cambridge, 1909.
  • [10] A. L. Whiteman, The cyclotomic numbers of order 12, Acta Arith., 6 (1960), 95-111.