Pacific Journal of Mathematics

Jordan triple systems with completely reducible derivation or structure algebras.

Erhard Neher

Article information

Source
Pacific J. Math., Volume 113, Number 1 (1984), 137-164.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102709382

Mathematical Reviews number (MathSciNet)
MR745600

Zentralblatt MATH identifier
0558.17004

Subjects
Primary: 17C99: None of the above, but in this section

Citation

Neher, Erhard. Jordan triple systems with completely reducible derivation or structure algebras. Pacific J. Math. 113 (1984), no. 1, 137--164. https://projecteuclid.org/euclid.pjm/1102709382


Export citation

References

  • [1] N. Bourbaki, lgebre, Chap. 8 Hermann,Paris 1958.
  • [2] N. Bourbaki, Groupes et algebres de Lie, Chap. 1, Hermann,Paris 1971.
  • [3] N. Bourbaki, Groupes et algebres de Lie, Chap. 7 et 8. Hermann,Paris 1975.
  • [4] H. Braun and M. Koecher,Jordan-Algebren, Springer-Verlag, Berlin-Heidelberg-New York 1966.
  • [5] C. Chevalley, Theorie des groupes de Lie, tome II. Hermann,Paris 1951.
  • [6] K.-H. Helwig, Halbeinfache reelle Jordan-Algebren, Habilitationsschrift, Mnchen 1968.
  • [7] C Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math., 64 (1942), 677-694.
  • [8] N. Jacobson, Lie Algebras, Interscience Publishers, New York-London-Sydney 1962.
  • [9] O. Khn and A. Rosendahl, Wedderburnzerlegung fur Jordan-Paare, Manuscripta Math., 24 (1978), 403-435.
  • [10] O. Loos, Lectures on Jordan triples, Lecture notes, The University of British Columbia, Vancouver 1971.
  • [11] O. Loos, Jordan Pairs, Lecture notes in mathematics 460, Springer-Verlag, Berlin- Heidelberg-New York 1975.
  • [12] O. Loos, Bounded symmetric domains and Jordan pairs, Lecture notes, University of California at Irvine 1977.
  • [13] K. McCrimmon, Peirce ideals in Jordan triple systems, Pacific J. Math., 83 (1979), 415-439.
  • [14] K. Meyberg, Lectures on algebras and triple systems, Lecture notes, The University of Virginia, Charlottesville 1972.
  • [15] E. Neher, Cartan-Involutionen von halbeinfachen reellenJ ordan-Trip elsystemen, Math. Z., 169 (1979), 271-292.
  • [16] E. Neher, Involutive gradings of Jordan structures, Comm. Algebra, 9 (1981), 575-599.
  • [17] H. P. Petersson, Conjugacy of idempotents in Jordan pairs, Comm. Algebra, 6 (1978), 673-715.
  • [18] R. D. Schafer, A theorem on the derivations of Jordan algebras, Proc. Amer. Math. Soc, 2(1951), 290-294.