Pacific Journal of Mathematics

Ideal matrices. III.

Olga Taussky

Article information

Source
Pacific J. Math., Volume 118, Number 2 (1985), 599-601.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102706464

Mathematical Reviews number (MathSciNet)
MR789196

Zentralblatt MATH identifier
0568.12006

Subjects
Primary: 15A36
Secondary: 11C20: Matrices, determinants [See also 15B36]

Citation

Taussky, Olga. Ideal matrices. III. Pacific J. Math. 118 (1985), no. 2, 599--601. https://projecteuclid.org/euclid.pjm/1102706464


Export citation

References

  • [1] O. Taussky, A note on group matrices, Proc. Amer. Math.. So, 6 (1955), 984-986.
  • [2] O. Taussky, Ideal matrices J, Archiv d. Math.,(13) (1962), 275-282.
  • [3] O. Taussky, Ideal matrices II, Math.Ann., 150 (1963), 218-225.
  • [4] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer 1980.
  • [5] H. Jacobinski, Jber die auptordnung eines K'rpersals Gruppenmodul',J. f. d. reine und angew. Math.,213 (1964), 151-164.
  • [6] D. Maurer, Stckelberger's criterion, Galois algebras and tame ramifications, J. Pure and Appl. Algebra,33 (1984), 281-293.
  • [7] L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, Algebraic number fields, Editor A. Frhlich, Academic Press, 1977.
  • [8] S. Ullom, Integral representations afforded by ambiguous ideals in some abelian exten- sions, J. Number Theory, 6 (1974), 32-49.
  • [9] H. Yokoi, On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J., 16 (1960), 83-90.
  • [10] H. Yokoi, A cohomological investigation of the discriminant of a normal algebraic number field, Nagoya Math. J., 27 (1966), 207-211.

See also

  • Olga Taussky. Ideal matrices. I. I [MR 27 #168] Arch. Math. 13 1962 275--282.
  • Olga Taussky. Ideal matrices. {II}. II [MR 28 #105] Math. Ann. 150 1963 218--225.
  • Ideal matrices. IV. IV [MR 898 923] Current trends in matrix theory (Auburn, Ala., 1986) 361--367 North-Holland New York 1987.