Pacific Journal of Mathematics

Extension properties induced by complete quasi-uniformities.

Peter Fletcher and Hans-Peter Künzi

Article information

Source
Pacific J. Math., Volume 120, Number 2 (1985), 357-384.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703419

Mathematical Reviews number (MathSciNet)
MR810777

Zentralblatt MATH identifier
0573.54023

Subjects
Primary: 54E15: Uniform structures and generalizations

Citation

Künzi, Hans-Peter; Fletcher, Peter. Extension properties induced by complete quasi-uniformities. Pacific J. Math. 120 (1985), no. 2, 357--384. https://projecteuclid.org/euclid.pjm/1102703419


Export citation

References

  • [I] A. V. Arhangeskii and D. V. Ranchin, Everywhere-dense subspaces of topological products and properties related to final compactness, Vestnik Moskov Univ. Mat., (= Moscow Univ. Bull.) 37 (1982), 21-28.
  • [2] B. Balcar, R. Frankiewicz, and C. Mills, More on nowheredense closed P-sets, Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys., 28 (1980), 295-299.
  • [3] S. Broverman, Pseudocompactness properties, Proc. Amer. Math. Soc, 59 (1976), 175-178.
  • [4] W. W. Comfort and H. Herrlich, On the relations P(X X Y) = P(X) X P(Y), General Topology Appl., 6 (1976), 37-43.
  • [5] H. H. Corson, Normality in subspacesof product spaces, Amer. J. Math., 81 (1959), 785-796.
  • [6] E. van Douwen, Remote points, Dissertationes Math., 188 (1981) Warsaw.
  • [7] E. K. van Douwen, The Integers and Topology, Handbook of Set-Theoretic Topol- ogy, ed. K. Kunen and J. Vaughan, North Holland, (1984), 111-167.
  • [8] N. Dykes, Mappings and realcompact spaces,Pacific J. Math.,31 (1969), 347-358.
  • [9] N. Dykes, Generalizations of realcompact spaces,Pacific J. Math.,33 (1970), 571-581.
  • [10] R. Engelking, General Topology,Monografie Mat., 60, Polish Scientific Publishers, Warsaw, 1977.
  • [II] W. M. Fleischman, A new extension of countable compactness, Fund. Math., 67 (1970), 1-9.
  • [12] W. M. Fleischman, On fundamental open coverings, Proc. International Conference on Topology and its Applications, Herceg Novi, Yugoslavia, 1968.
  • [13] P. Fletcher and W. F. Lindgren, Quasi-UniformSpaces, Lecture Notes in Pure and Applied Mathematics,77 (1982), Marcel Dekker, New York.
  • [14] P. Fletcher and W. F. Lindgren, Quasi-uniformities with a transitivebase, Pacific J. Math.,43 (1972), 619-631.
  • [15] P. Fletcher and S. A. Naimpally, On almost-complete and almost-precompact quasi- uniform spaces, Czech. Math. J., 21(96) (1971), 383-390.
  • [16] S. P. Franklin and M. Rajagopalan, Some examples in topology,Trans. Amer. Math. Soc, 155 (1971), 305-314.
  • [17] Z. Frolik, A generalization of realcompact spaces, Czech Math. J., 13(88) (1963), 127-138.
  • [18] I. Glicksberg, Stone-Cechcompactificationsof products, Trans. Amer. Math. Soc, 90 (1959), 369-382.
  • [19] S. L. Gulden, W. M. Fleischman and J. H. Weston, Linearly ordered topological spaces, Proc Amer. Math. Soc, 24 (1970), 197-203.
  • [20] K. Hardy, Notes on two generalizations of almost realcompactspaces, Math.Centrum Amsterdam Afd. Zuivere Wisk., ZW 57/75, (1975).
  • [21] K. P. Hart, Strong collectionwise normality and M. E. Rudin's Dowker space, Proc. Amer. Math. Soc, 83 (1981),802-806.
  • [22] R. Haydon, On compactness in spaces of measures and measurecompact spaces, Proc. London Math. Soc,(3) (29) (1974), 1-16.
  • [23] S. H. Hechler, On some weakly compact spaces and their products, General Topology Appl., 5 (1975), 83-93.
  • [24] H. Herrlich and J. van der Slot, Properties which are closely related to compactness, Indag. Math., 29 (1967),524-529.
  • [25] J. G. Home, Countableparacompactness and cb-spaces, Notices Amer. Math. Soc, 6 (1959), 629-630.
  • [26] G. I. Kac, On completely regular spaces without complete uniform structures, Uspehi Mat. Nauk (N.S.) (Russian Math. Surveys), 12 (1957),3(75), 329-332.
  • [27] A. Kato, Union of realcompact spaces and Lindel'f spaces, Canad. J. Math., 31 (1979), 1247-1268.
  • [28] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc, 24 (1970),760-766.
  • [29] P. Kenderov, On Q-spaces, Dokl. Akad. Nauk SSSR, 175 (1967),Soviet Math. Dokl, 8 (1967),849-852.
  • [30] H. P. Knzi, A note on Ralph Fox's y-space, Proc. Amer. Math. Soc, 91 (1984), 467-470.
  • [31] H. P. Knzi and P. Fletcher, Even covering properties and somewhat normal spaces, Canad. Math. Bull., to appear.
  • [32] H. P. Knzi and P. Fletcher, Some generalizations of compactness, submitted for publication.
  • [33] J. Mack, On a class of countably paracompact spaces, Proc. Amer. Math. Soc, 16 (1965), 467-472.
  • [34] J. Mack and D. Johnson, The Dedekind completion of C(X), Pacific J. Math., 20 (1967), 231-243.
  • [35] V. I. Malyhin, On countablespaces having no bicompactification of countable tightness, Dokl. Akad. Nauk SSSR, 206 (1972), 1293-1296 (Soviet Math. Dokl. 13 (1972), 1407-1411.)
  • [36] M. J. Mansfield, Some generalizations of full normality, Trans. Amer. Math. Soc, 86 (1957), 489-505.
  • [37] R. L. Moore, Foundations of point-set theory, Amer. Math. Soc. Publ. No. 13,revised edition, 1962.
  • [38] P. J. Nyiko^ Simple P-points and related matters, preprint.
  • [39] P. J. Nyikos and J. E. Vaughan, Ordinal extensions of and sequential compactness, preprint.
  • [40] J. R. Porter and R. G. Woods, Extensions of ausdorff spaces, Pacific J. Math., 103 (1982), 111-134.
  • [41] V. Saks, Products of countably compact spaces, Topology Proc, 4 (1979),553-575.
  • [42] B.M. Scott, Toward a product theoryfor orthocompactness, Studies in topology (Proc Conf. Univ. North Carolina, Charlotte, N. C, 1974; dedicated to Math. Sect. Polish Acad. Sci.), 517-537, AcademicPress,New York, 1975.
  • [43] B.M. Scott, Pseudocompact metacompact spaces are compact, Topology Proceedings, 4 (1979), 577-587.
  • [44] P. Simon, A note on Rudin's example of Dowker space, Comment. Math. Univ. Carolinae, 12 (1971),No.4, 825-834.
  • [45] M. Ulmer, Products of weakly-^-compact spaces, Trans. Amer. Math. Soc, 170 (1972), 279-284.
  • [46] M. Ulmer, C-embedded -spaces, Pacific J. Math., 46 (1973),591-602.
  • [47] J. E. Vaughan, Countably Compact and Sequentially Compact Spaces, Handbook of Set-Theoretic Topology, ed. K. Kunen and J. Vaughan, North Holland, (1984), 569-602.
  • [48] R. C. Walker, The Stone-Cech Compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, 83 (1974), Springer-Verlag,New York.
  • [49] M. D. Weir, Hewitt-NachbinSpaces, Mathematics Studies, 17 (1975) North Holland, Amsterdam.
  • [50] R. F. Wheeler, Topological measure theory for completely regular spaces and their projecte covers, Pacific J. Math., 82 (1979), 565-584.
  • [51] R. G. Woods, Some #0-bounded subsets of Stone-Cech compactifications, Israel J. Math., 9 (1971), 250-256.
  • [52] R. G. Woods, Ideals of pseudocompact regular closed sets and absolutes of Hewitt real- compactifcations, General TopologyAppl., 2 (1972), 315-331.
  • [53] R. G. Woods, Topological extension properties, Trans. Amer. Math. Soc, 210 (1975), 365-385.
  • [54] R. G. Woods, A survey of absolutes of topological spaces, Topological Structures II, Math. Centre Tracts, 116 (1979), 323-362.
  • [55] R. G. Woods, A Tychonoff almost realcompactification, Proc. Amer. Math. Soc, 43 (1974), 200-208.
  • [56] P. Zenor, Certain subsets of products of metacompact spaces and subparacompact spaces are realcompact, Canad. J. Math., 24 (1972), 825-829.