Pacific Journal of Mathematics

The isotropy representation for homogeneous Siegel domains.

J. E. D'Atri, J. Dorfmeister, and Yan Da Zhao

Article information

Source
Pacific J. Math., Volume 120, Number 2 (1985), 295-326.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703412

Mathematical Reviews number (MathSciNet)
MR810773

Zentralblatt MATH identifier
0592.32025

Subjects
Primary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10]
Secondary: 32M15: Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras [See also 22E10, 22E40, 53C35, 57T15] 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]

Citation

D'Atri, J. E.; Dorfmeister, J.; Zhao, Yan Da. The isotropy representation for homogeneous Siegel domains. Pacific J. Math. 120 (1985), no. 2, 295--326. https://projecteuclid.org/euclid.pjm/1102703412


Export citation

References

  • [1] R. Azencott and E. Wilson, Homogeneous manifolds with negative curvature I, Trans. Amer. Math. Soc, 215 (1976), 323-362.
  • [2] R. Azencott and E. Wilson, Homogeneous manifolds with negative curvature II, Mem. Amer. Math. Soc, Number 178, (1976).
  • [3] J. E. D'Atri, The curvature of homogeneous Siegel domains, J. Differential Geom., 15 (1980), 61-70.
  • [4] J. E. D'Atri, Holomorphic sectional curvatures of boundedhomogeneous domains and related questions, Trans. Amer. Math. Soc, 256 (1979), 405-413.
  • [5] J. E. D'Atri, Sectional curvatures and quasi-symmetric domains, J. Differential Geom., 16 (1981), 11-18.
  • [6] J. E. D'Atri and I. Dotti Miatello, A characterization of bounded symmetric domains by curvature, Trans. Amer. Math. Soc,276 (1983), 531-540.
  • [7] J. Dorfmeister, Zur Kunstruktion homogener Kegel, Math. Ann.,216 (1975), 79-96.
  • [8] J. Dorfmeister, Inductive construction of homogeneous cones, Trans. Amer. Math. Soc, 252 (1979), 321-349.
  • [9] J. Dorfmeister, Algebraic description of homogeneous cones, Trans. Amer. Math. Soc, 255 (1979), 61-89.
  • [10] J. Dorfmeister, Peirce-Zerlegungen und Jordan-Strukturen zu homogenen Kegeln, Math. Z., 169 (1979), 179-194.
  • [11] J. Dorfmeister, Quasi symmetric Siegel domains and the automorphisms of homogeneous Siegel domains, Amer. J. Math., 102 (1980),537-563.
  • [12] J. Dorfmeister, Homogeneous Siegel domains, Nagoya Math. J., 86 (1982), 39-83.
  • [13] J. Dorfmeister, Homogene Siegel-Gebiete, Habilitationsschrift, Munster, 1978.
  • [14] J. Dorfmeister, Simply transitive groups and Khler structures on homogeneous Siegel do- mains, to appear in Trans. Amer. Math. Soc.
  • [15] J. Dorfmeister, Homogeneous Khler manifolds admitting a transitive solvable group of automorphisms, to appear in Ann. Sci. Ecole Norm. Sup.
  • [16] S. G. Gindikin, Analysis in homogeneous domains, Uspekhi Mat. Nauk, 19 (1964), 3-92.
  • [17] S. G. Gindikin, I. I. Pyatetskii-Shapiro and E. B. Vinberg, Homogeneous Khler manifolds, in "Geometry of homogeneous domains", C.I.M.E. (1967), 1-88.
  • [18] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, N. Y., 1962.
  • [19] S. Kaneyuki, Homogeneous Bounded Domains and Siegel Domains, Lecture Notes in Math, V. 241,Springer,Berlin,1971.
  • [20] W. Kaup, Einige Bemerkungen iberpolynomial Vektorfelder, Jordanalgebren, und die Automorphismen von SiegelschenGebieten, Math. Ann., 204 (1973), 131-144.
  • [21] W. Kaup, Y. Matsushima, T. Ochiai, On the automorphism and equivalences of generalized Siegel domains, Amer. J. Math., 92 (1970), 475-497.
  • [22] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, Berlin, 1972.
  • [23] A. Koranyi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math., 82 (1965), 332-350.
  • [24] A. Koranyi and E. Stein, H2 spaces of generalized half-spaces, Studia Math., 44 (1972), 379-388.
  • [25] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogenes complexes, Canad. J. Math., 7 (1955), 562-576.
  • [26] O. Loos, Jordan Pairs, Lectures Notes in Math., V. 460, Springer,Berlin, 1973.
  • [27] S. Murakami, On Automorphisms of Siegel Domains, Lecture Notes in Math., V. 286, Springer, Berlin,1971.
  • [28] I. I. Pyatetskii-Shapiro, Automorphic Functions and the Geometry of Classical Do- mains, English edition, Gordon and Breach, New York, 1969.
  • [29] O. S. Rothaus, Domains of positivity, Abh. Math Sem. Univ. Hamburg, 24 (1960), 189-235.
  • [30] E. B. Vinberg, The Theoryof Convex Homogeneous Cones, English translation, Trans. Moscow Math. Soc, 12 (1963), 340-403.
  • [31] E. B. Vinberg, The Structure of the Group of Automorphisms of a Homogeneous convex cone, English translation, Trans. Moscow Math. Soc, 13 (1965), 63-93.
  • [32] H. L. Williams, The structure of isometry groups for a class of homogeneous Rieman- nian manifolds with non-positive curvature, Ph. D. thesis, Washington Univ., St. Louis, 1978.
  • [33] Xu Yichao, On the Bergman kernel function of homogeneous bounded domains, Scientia Sinica, Special Issue (II), (1979), 80-90.