Pacific Journal of Mathematics

A Galois-correspondence for general locally compact groups.

Joachim Boidol

Article information

Source
Pacific J. Math., Volume 120, Number 2 (1985), 289-293.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703411

Mathematical Reviews number (MathSciNet)
MR810772

Zentralblatt MATH identifier
0579.22006

Subjects
Primary: 22D10: Unitary representations of locally compact groups
Secondary: 22D35: Duality theorems

Citation

Boidol, Joachim. A Galois-correspondence for general locally compact groups. Pacific J. Math. 120 (1985), no. 2, 289--293. https://projecteuclid.org/euclid.pjm/1102703411


Export citation

References

  • [1] B. A. Barnes, A note on separating families of representations, Proc. Amer. Math. Soc, 87 (1983), 95-98.
  • [2] J. Boidol, H. Leptin, J. Schrmann and D. Vahle, Rume primitier Ideale von Gruppenalgebren, Math. Ann., 236 (1978), 1-13.
  • [3] J. Boidol, Connected groups with polynomially induced dual, J reine angew. Math., 331 (1982), 32-46.
  • [4] J. Boidol, *-regularity of some classes of solvable gropus, Math. Ann.261 (1982), 477-481.
  • [5] J. Boidol, Group algebras with a unique C*-norm, Functional Anal., 56 (1984), 220-232.
  • [6] N. Bourbaki, Theories Spectrales, Paris: Hermann 1967.
  • [7] W. Hauenschild, Subhypergroups and normal subgroups, Math. Ann., 256 (1981), 1-18.
  • [8] S. Helgason, Lacunary Fourier series on noncommutative groups, Proc. Amer. Math. Soc, 9 (1958), 782-790.
  • [9] E. Kaniuth, Weak containment and tensor products of group representations, Math. Z., 180 (1982), 107-117.
  • [10] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc, 166 (1972), 401-410.