Pacific Journal of Mathematics

Semiprime $\aleph$-${\rm QF}3$ rings.

Giuseppe Baccella

Article information

Source
Pacific J. Math., Volume 120, Number 2 (1985), 269-278.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703408

Mathematical Reviews number (MathSciNet)
MR810770

Zentralblatt MATH identifier
0581.16012

Subjects
Primary: 16A12
Secondary: 16A36

Citation

Baccella, Giuseppe. Semiprime $\aleph$-${\rm QF}3$ rings. Pacific J. Math. 120 (1985), no. 2, 269--278. https://projecteuclid.org/euclid.pjm/1102703408


Export citation

References

  • [1] G. Baccella, On flat factor rings and fully right idempotent rings, Ann. Univ. Ferrara, 26 (1980), 125-141.
  • [2] G. Baccella, On -semsimple rings. A study of the socle of a ring, Comm. Algebra, 8 (10), (1980), 889-909.
  • [3] G. Baccella, Weakly semiprime rings, Comm. Algebra, 12 (4), (1984), 489-509.
  • [4] G. Baccella, H-QF3 rings with zero singular ideal, to appear in J. Algebra.
  • [5] R. R. Colby and E. A. Rutter, Jr., QF3 rings with zero singular ideal, Pacific J. Math., 28 (1969), 303-308.
  • [6] J. S. Golan, Localization of Noncommutatie Rings, Monographs and Textbooks in Math., Marcel Dekker, Inc., New York, 1975.
  • [7] R. Gordon, Rings in which minimal left ideals are projectie, Pacific J. Math., 31 (1969), 679-692.
  • [8] N. Jacobson, Structure of Rings, Amer. Math. Soc. Coll. Publ., Providence, R. I., 1964.
  • [9] J. P. Jans, Projectie-injectiemodules, Pacific J. Math., 9 (1959),1103-1108.
  • [10] Y. Kawada, On dominant modules and dominant rings, J. Algebra, 56 (1979), 409-435.
  • [11] L. Levy, Unique subdirect sum of prime rings, Trans. Amer. Math. Soc, 106(1963), 64-76.
  • [12] B. Stenstrm, Rings of Quotients, Grundlehren der Math. Wiss., Bd. 217, Springer- Verlag, Berlin/New York, 1975.
  • [13] H. Tachikawa,Quasi-Frobenius Rings and Generalizations, Lect. Notes in Math.,No. 351, Springer-Verlag, Berlin/NewYork, 1973.