Pacific Journal of Mathematics

Generalized $s$-numbers of $\tau$-measurable operators.

Thierry Fack and Hideki Kosaki

Article information

Source
Pacific J. Math., Volume 123, Number 2 (1986), 269-300.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102701004

Mathematical Reviews number (MathSciNet)
MR840845

Zentralblatt MATH identifier
0617.46063

Subjects
Primary: 46L10: General theory of von Neumann algebras
Secondary: 46L50 47A30: Norms (inequalities, more than one norm, etc.)

Citation

Fack, Thierry; Kosaki, Hideki. Generalized $s$-numbers of $\tau$-measurable operators. Pacific J. Math. 123 (1986), no. 2, 269--300. https://projecteuclid.org/euclid.pjm/1102701004


Export citation

References

  • [I] C. Akemann, J. Anderson, and G. Pedersen, Triangle inequalities in operator alge- bras, Linear and Multilinear Algebra, 11 (1982), 167-178.
  • [2] L. Brown, Lidskii9s theoremin the type II case, preprint.
  • [3] L. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, to appear in J. Operator Theory.
  • [4] C. E. Cleaver, Interpolation and extension of Lipschitz-Holder maps on Cp-spaces, Colloquim Math., 27 (1973), 83-87.
  • [5] J. Dixmier, Formes lineairessur un anneau df operateurs, Bull. Soc. Math. France, 81 (1953), 9-39.
  • [6] J. Dixmier, Les algebres d'operateurs dans espace hilbertien (algebres de von Neumann), Gauthier-Villars, Paris, 1968.
  • [7] W. Donoghue, Jr., Monotone Matrix Functionsand Analytic Continuation, Springer, Berlin-Heidelberg-New York, 1974.
  • [8] T. Fack, Sur la notion de aleur caracteristique, J. Operator Theory, 7 (1982), 307-333.
  • [9] T. Fack, Proof of the conjecture of A. Grothendieck on the Fuglede-Kadison determi- nant, J. Funct. Anal.,50 (1983),215-228.
  • [10] I. C. Gohberg and M. G. Krein, Introduction to linear non-selfadjoint operators, Translations of Mathematical Monographs Vol. 18, Amer. Math. Soc, Rhode Island, 1969.
  • [II] A. Grothendieck, Rearrangements de functions et inegalites de convexite dans les algebres de von Neumann munies d'une trace, Seminaire Bourbaki, (1955), 113-01- 113-13.
  • [12] U. Haagerup, Lp-spaces associated with an arbitraryvon Neumann algebra, Colloques International^, CNRS, No. 274,175-184.
  • [13] H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra (Non-commutative Lp-spaces), J. Funct. Anal., 56 (1984), 29-78.
  • [14] H. Kosaki, Applications of uniform convexity of non-commutative Lp-spaces, Trans. Amer. Math. Soc,283 (1984), 265- 282.
  • [15] H. Kosaki, On the continuity of the map <p --> |<p|from the predual of a W*-algebra, J. Funct. Anal.,59 (1984), 123-131
  • [16] R. Kunze, Lp-Fourier transforms in locally compact unimodular groups, Trans. Amer. Math. Soc, 89 (1958), 519-540.
  • [17] C. McCarthy, Cp, Israel J. Math., 5 (1967), 249-271.
  • [18] F. Murray and J. von Neumann, On rings of operators, Ann. of Math., 37 (1936), 116-229.
  • [19] E. Nelson, Notes on non-commutative integration, J. Funct. Anal., 15 (1974), 103-116.
  • [20] A. R. Padmanabhan, Convergence in measure and related results in finite rings of operators, Trans. Amer. Math. Soc, 128 (1967), 359-378.
  • [21] A. R. Padmanabhan, Probabilistic aspects of von Neumann algebras, J. Funct. Anal., 31 (1979), 139-149.
  • [22] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974.
  • [23] I. Segal, A non-commutative extension of abstract integration, Ann. of Math., 57 (1953), 401-457.
  • [24] B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press, 1979.
  • [25] M. G. Sonis, On a class of operators with Segal measure on the projectors, Math. USSR Sbornik, 13 (1971), 344-359.
  • [26] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
  • [27] F. Stinespring, Integration theorem for gages and duality for unimodular groups, Trans. Amer. Math. Soc, 90 (1959), 15-56.
  • [28] M. Takesaki, Duality for crossedproducts and structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249-310.
  • [29] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin-Heidelberg-New York, 1979.
  • [30] P. K. Tarn, Isometries of Lp-spaces associated with semi-finite von Neumann algebras, Trans. Amer. Math. Soc, 254 (1979), 339-354.
  • [31] M. Terp, Lp-spaces associated with von Neumann algebras, Copenhagen Univ., 1981.
  • [32] R. C. Thompson, Convex and concave functions of singular values of matrix sums, Pacific J. Math., 66 (1976), 285-290.
  • [33] F. J. Yeadon, Non-commutative Lp-spaces, Proc. Cambridge Philos. Soc, 77 (1975), 91-102.
  • [34] L. Zsido, On the spectral subspaces of locally compact abelian groups of operators, Advances in Math., 36 (1980), 213-276.