Pacific Journal of Mathematics

Regularity of capillary surfaces over domains with corners: borderline case.

Luen-Fai Tam

Article information

Source
Pacific J. Math., Volume 124, Number 2 (1986), 469-482.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102700491

Mathematical Reviews number (MathSciNet)
MR856173

Zentralblatt MATH identifier
0604.49029

Subjects
Primary: 49F10
Secondary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]

Citation

Tam, Luen-Fai. Regularity of capillary surfaces over domains with corners: borderline case. Pacific J. Math. 124 (1986), no. 2, 469--482. https://projecteuclid.org/euclid.pjm/1102700491


Export citation

References

  • [1] P. Concus andR. Finn, Capillary free surfaces in agravitational field, Acta Math., 132 (1974),207-223.
  • [2] R. Finn, Existence criteriafor capillary free surfaces without gravity, Indiana Univ. Math. J.,32(1983), 439-460.
  • [3] E. Giusti, Generalized solutions of mean curvature equations, Pacific J. Math., 88 (1980), 297-321.
  • [4] E. Giusti, Minimal surfaces and functions of bounded variation. Notes on pure mathe- matics. Australian National Univ., Canberra (1977).
  • [5] N. J. Korevaar, On the behavior of a capillary surface at a re-entrant corner, Pacific J. Math., 88 (1980), 379-385.
  • [6] U. Massari and L. Pepe, Sulle successioni convergenti di superfici a curvatura media assegnata, Rend. Sem. Mat. Padova, 53 (1975), 53-68.
  • [7] M. Miranda, Unprincipio di massimo forte per lefrontiere minimali ecc, Rend. Sem. Mat. Padova, 45 (1971), 355-366.
  • [8] M. Miranda, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa, (4) 4 (1977), 313-322.
  • [9] L. Simon, Regularity of capillary surfaces over domains with corners, Pacific J. Math., 88 (1980), 363-377.
  • [10] L.-F. Tarn. The behavior of capillary surfaces as gravity tends to zero, to appear in Comm. in Partial Differential Equations.
  • [11] L.-F. Tarn. The behavior of capillary surfaces as gravity tends to zero, Existence criteria for capillary free surfaces without gravity, to appear in Pacific J. Math.
  • [12] J. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm. in Partial Differential Equations, 2 (1977), 323-357.