Pacific Journal of Mathematics

Counting functions and majorization for Jensen measures.

Charles S. Stanton

Article information

Source
Pacific J. Math., Volume 125, Number 2 (1986), 459-468.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102700088

Mathematical Reviews number (MathSciNet)
MR863538

Zentralblatt MATH identifier
0597.32007

Subjects
Primary: 32A22: Nevanlinna theory (local); growth estimates; other inequalities {For geometric theory, see 32H25, 32H30}
Secondary: 31C05: Harmonic, subharmonic, superharmonic functions 32A35: Hp-spaces, Nevanlinna spaces [See also 32M15, 42B30, 43A85, 46J15] 32A40: Boundary behavior of holomorphic functions 32E25 46J10: Banach algebras of continuous functions, function algebras [See also 46E25] 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30]

Citation

Stanton, Charles S. Counting functions and majorization for Jensen measures. Pacific J. Math. 125 (1986), no. 2, 459--468. https://projecteuclid.org/euclid.pjm/1102700088


Export citation

References

  • [I] H. Alexander, The area of the spectrum of an element of a uniformalgebra, Complex Approximation, 3-12, Birkhauser, 1980.
  • [2] H. Alexander, B. A. Taylor, and J. Ullman, Areas of projections of analyticsets, Invent. Math, 16(1972), 335-341.
  • [3] S. Axler and J. H. Shapiro, Putnam's theoremAlexander's spectral area estimate and VMO., (preprint).
  • [4] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, 1980.
  • [5] M. Essen and D. F. Shea, On some questions of uniqueness in the theory of symmetrization, Ann. Acad. Sci. Fenn. Ser. A. I. Math, 4 (1978/79), 311-340.
  • [6] M. Essen, D. F. Shea, and C. Stanton, A value-distributioncriterion for the class L log L andsomerelated question, Annales Inst. Fourier, (to appear).
  • [7] T. Gamelin, UniformAlgebrasand Jensen Measures,London Math. Soc. Lecture Notes Series no. 32, Cambridge University Press, London and New York, 1979.
  • [8] P. A. Griffiths, Entire HolomorphicMappings in One and Several Complex Variables, Princeton University Press,1976.
  • [9] W. K. Hayman, Meromorphic Functions, Oxford University Press, 1964.
  • [10] O. Lehto, A majorant principle in the theory of functions, Math. Scand, 1 (1953), 5-17.
  • [II] G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, N. J, 1951.
  • [12] W. Rudin, Function Theory in the UnitBallof Cn, Springer-Verlag, 1980.
  • [13] P. Stein, Ona theory ofM. Riesz, J. London Math. Soc, 8 (1933), 242-247.
  • [14] W. Stoll, Introduction to Value Distribution Theory of Meromorphic Maps, Lecture Notes in Mathematics no. 950, 210-359, Springer-Verlag, 1982.