Pacific Journal of Mathematics

Analytic continuation of local representations of Lie groups.

Palle E. T. Jorgensen

Article information

Pacific J. Math., Volume 125, Number 2 (1986), 397-408.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}


Jorgensen, Palle E. T. Analytic continuation of local representations of Lie groups. Pacific J. Math. 125 (1986), no. 2, 397--408.

Export citation


  • [1] O. Bratteli, and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Springer-Verlag, Berlin-N. Y. 1979.
  • [2] L. Garding, Vecteurs analytiques dans les representations des groupes de Lie, Proc. Natl. Acad. Sci. USA, 33 (1947), 331-332.
  • [3] J. Frhlich, Unbounded symmetric semigroups on a seperable Hubert space are essentially selfadjoint, Adv. in Appl. Math., 1 (1980), 237-256.
  • [4] J. Frhlich, K. Osterwalder, and E. Seiler, On virtual representations of symmetric spaces and their analytic continuation,Ann. Math., 118 (1983), 461-489.
  • [5] F. M. Goodman, and P. E. T. Jorgensen, Lie algebras of unbounded derivations, J. Funct. Anal, 52 (1983), 369-384.
  • [6] R. Goodman, Complex Fourieranalysis on a nilpotent Lie group, Trans. Amer. Math. Soc,160 (1971), 373-391.
  • [7] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York 1978.
  • [8] P. E. T. Jorgensen, Analytic continuationof local representations of symmetric space, preprint 1984, submitted.
  • [9] P. E. T. Jorgensen, and R. T. Moore, Operator Commutation Relations, D. Reidel Publishing Co, Dordrecht-Boston1984.
  • [10] P. E. T. Jorgensen, Perturbation and analytic continuation of group representations, Bull. Amer. Math. Soc, 82 (1976), 921-924.
  • [11] A. Klein, and L. J. Landau, Construction of a unique selfadjoint generator for a symmetric local semigroup, J. Funct. Anal., 44 (1981),121-137.
  • [12] A. Klein, and L. J. Landau, From the Euclidean to the Poincare group via Oster- walder-Schrader positivity, Comm. Math. Phys.,87 (1983),469-484.
  • [13] M. Lscher, and G. Mack, Global conformal inariance in quantum field theory, Comm. Math. Phys, 41 (1975),203-234.
  • [14] E. Nelson, Analytic vectors, Ann. Math, 70 (1959), 572-615.
  • [15] E. Nelson, Topics in Dynamics, I: Flows, Princeton Univ. Press University Press, Princeton, N. J. 1969.
  • [16] K. Osterwalder, and R. Schrader, Axioms for Euclidean Green's functions, I, II, Comm. Math. Phys,31 (1973), 83-112; 42 (1975),281-305.
  • [17] R. C. Penney, Non-elliptic Laplace equations on nilpotent Lie groups, Ann. Math, 119 (1984), 309-385.
  • [18] R. C. Penney, Harmonically induced representations on nilpotent Lie groups and automorphic forms on nilmanifolds, Trans. Amer. Math. Soc, 260 (1980),123-145.
  • [19] R. Schrader, Personal communication, 1985.
  • [20] R. Schrader, Reflection positiity for the complementary, series of SL(2,Q, preprint 1985. To appear in Pub. RIMS, KyotoUniversity.
  • [21] E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, LNP, 159, Springer-Verlag,New York 1982.
  • [22] J. Simon, On the integrability of representations of finite dimensional real Lie algebras, Comm. Math. Phys, 28 (1972), 39-46.