Pacific Journal of Mathematics

Unitary colligations in $\Pi_\kappa$-spaces, characteristic functions and Štraus extensions.

A. Dijksma, H. Langer, and H. S. V. de Snoo

Article information

Source
Pacific J. Math., Volume 125, Number 2 (1986), 347-362.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102700081

Mathematical Reviews number (MathSciNet)
MR863531

Zentralblatt MATH identifier
0597.47019

Subjects
Primary: 47B25: Symmetric and selfadjoint operators (unbounded)
Secondary: 47A45: Canonical models for contractions and nonselfadjoint operators 47B50: Operators on spaces with an indefinite metric [See also 46C50]

Citation

Dijksma, A.; Langer, H.; de Snoo, H. S. V. Unitary colligations in $\Pi_\kappa$-spaces, characteristic functions and Štraus extensions. Pacific J. Math. 125 (1986), no. 2, 347--362. https://projecteuclid.org/euclid.pjm/1102700081


Export citation

References

  • [1] N. I. Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hubert Raum, 8th edition,Akademie Verlag, Berlin, 1981.
  • [2] D. Z. Arov and L. Z. Grossman, Scattering matrices in the theory of dilations of isometric operators, Dokl. Akad. Nauk SSSR, 270 (1983), 17-20 (English transl.: Sov. Math. Dokl., 27 (1983), 518-522).
  • [3] T. Ya. Azizov, Extensions of J-isometric and J-symmetric operators, Funkcional. Anal.: Prilozen, 18 (1984), 57-58 (English transl.: FunctionalAnal. Appl., 18 (1984), 46-48).
  • [4] M. S. Brodskii, Unitary operator colligationsand their characteristic functions, Uspekhi Mat. Nauk, 33: 4 (1978), 141-168 (English transl.: Russian Math. Surveys, 33: 4 (1978), 159-191).
  • [5] K. J. Brown, A symmetric operator maximal with respect to a generalised resolutionof the identity, J. London Math. Soc, (2) 7 (1974), 609-616.
  • [6] E. A. Coddington, Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc, 134 (1973).
  • [7] E. A. Coddington and H. S. V. de Snoo, Positive selfadjoint extensions of positive symmetric subspaces, Math.Z., 159 (1978), 203-214.
  • [8] A. Dijksma, H. Langer and H. S. V. de Snoo, Selfadjoint -extensions of symmetric subspaces: an abstract approach to boundaryproblems with spectral parameter in the boundary conditions, Integral equations and operator theory, 7 (1984), 459-515.
  • [9] A. Dijksma, Characteristic functions of unitary operator colligations in k-spaces, to be published.
  • [10] O. P. Filimonov, On the inverse problem of the theory of characteristicoperator functions of metric nodes in the space U, Dokl. Akad. Nauk Ukrain. SSR,Ser.A, no. 9 (1977), 798-802.
  • [11] I. S. Iohvidov, M. G. Krein and H. Langer, Introduction to the Spectral Theory of Operators in Spaces with an indefiniteMetric, Akademie Verlag, Berlin1982.
  • [12] M. G. Krein and H. Langer, Uber die verallgemeinertenResolventen und diechar- akteristische Funktion eines isometrischen Operators in Raume U, Hilbert Space Operators and Operator Algebras (Proc. Int. Conf., Tihany, 1970) Colloquia Math. Soc. Janos Bolyai, no. 5,North-Holland, Amsterdam (1972), 353-399.
  • [13] M. G. Krein and H. Langer, Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume zusammenhngen, Teil I: Einige Funktionenklassen und ihre Darstellungen, Math.Nachr., 77 (1977), 187-236.
  • [14] M. G. Krein and H. Langer, Some propositions on analytic matrix functions related to the theory of operators in the space , Acta Sci.Math.(Szeged), 43 (1981), 181-205.
  • [15] H. Langer and B. Textorius, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbertspace, Pacific J. Math.,72 (1977), 135-165.
  • [16] R. McKelvey, Spectral measures,generalized resolvents andfunctions of positive type, J. Math. Anal. Appl., 11 (1965), 447-477.
  • [17] W. Stenger, On the projection of a selfadjont operator, Bull. Amer. Math. Soc, 74 (1968), 369-372.
  • [18] A. V. Straus, Characteristic functions of linear operators, Izv. Akad. Nauk SSSR Ser. Mat.,24 (1960), 43-74 (English transl.: Amer. Math. Soc. Transl., (2) 40 (1964), 1-37).
  • [19] A. V. Straus, On the extensions of symmetric operators depending on a parameter, Izv. Akad. Nauk SSSR Ser. Mat., 29 (1965), 1389-1416 (English transl.: Amer. Math. Soc. Transl., (2) 61 (1967), 113-141).
  • [20] A. V. Straus, On the extensions and the characteristicfunction of a symmetric operator, Izv. Akad. Nauk SSSR Ser. Mat.,32 (1968), 186-207 (English transl.: Math. USSR Izv., 2 (1968), 181-204).
  • [21] A. V. Straus, On one-parameter families of extensions of a symmetric operator, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 1325-1352 (English transl.: Amer. Math. Soc. Transl., (2) 90 (1970), 135-164).
  • [22] A. V. Straus, Extensions and generalized resolvents of a symmetric operator which is not densely defined, Izv. Akad. Nauk SSSR Ser. Mat., 34 (1970), 175-202 (English transl.: Math. USSR Izv., 4 (1970), 179-208).