Pacific Journal of Mathematics

Range of Gateaux differentiable operators and local expansions.

Jong Sook Bae and Sangsuk Yie

Article information

Source
Pacific J. Math., Volume 125, Number 2 (1986), 289-300.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102700077

Mathematical Reviews number (MathSciNet)
MR863527

Zentralblatt MATH identifier
0597.47033

Subjects
Primary: 47H06: Accretive operators, dissipative operators, etc.

Citation

Bae, Jong Sook; Yie, Sangsuk. Range of Gateaux differentiable operators and local expansions. Pacific J. Math. 125 (1986), no. 2, 289--300. https://projecteuclid.org/euclid.pjm/1102700077


Export citation

References

  • [1] M. Altman, A generalization of the Brezis-Browderprinciple on ordered sets, Nonlin- ear Analysis, TMA., 6 (1982), 157-165.
  • [2] H. Brezis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math., 21 (1976), 355-364.
  • [3] F. E. Browder, Normal solvability and -accretive mappings of Banach spaces, Bull. Amer. Math. Soc, 78 (1972), 186-192.
  • [4] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math. Vol. 118, part 2, Amer. Math. Soc, Providence, RI,1976.
  • [5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc, 215 (1976), 241-251.
  • [6] W. J. Cramer, Jr. and W. O. Ray. Solvability of nonlinear operator equations, Pacific J. Math., 95 (1981),37-50.
  • [7] D. J. Downing and W. O. Ray, Renorming and the theory of phi-accretive set-valued mappings, Pacific J. Math., 106 (1983), 73-85.
  • [8] I. Ekeland, Sur les problems variationnels, Compte Rendus Acad. Soc. Paris, 275 (1972), 1057-1059.
  • [9] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc, 1 (1976), 443-474.
  • [10] J. A. Park and S. Park, Surjectivity of -accretiveoperators, Proc. Amer. Math. Soc, 80 (1984),289-292.
  • [11] S. Park and J. S. Bae, On the Ray-Walker extension of the Caristi-Kirk fixed point theorem, to appear in Nonlinear Analysis,TMA.
  • [12] W. O. Ray, Normally solvable nonlinear operators, Contemp. Math., 18 (1983), 155-165.
  • [13] W. O. Ray and A. M. Walker, Mapping theorems for Gateaux differentiable and accretive operators, Nonlinear Analysis, TMA.,6 (1982), 423-433.
  • [14] W. O. Ray and A. M. Walker, Perturbations of normally solvable nonlinear operators, to appear.
  • [15] I. Rosenholtz and W. O. Ray, Mapping theorems for differentiable operators, Bull. Acad. Polon. Sci. Ser. Math. Aston. Phys, 29 (1981), 265-273.
  • [16] R. Schneberg, On the domain invariance theorem for accretive mappings, J. London Math. Soc, 24 (1981),548-554.
  • [17] R. Torrejon, A note on locally expansive and locally accretive operators, Canad. Math. Bull., 26 (1983), 228-232.
  • [18] M. Turinici, A generalization ofAltman's ordering principle, Proc Amer. Math. Soc, 90 (1984),128-132.