Pacific Journal of Mathematics

Pseudoconvex domains with peak functions at each point of the boundary.

Andrei Iordan

Article information

Source
Pacific J. Math., Volume 133, Number 2 (1988), 277-287.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689473

Mathematical Reviews number (MathSciNet)
MR941923

Zentralblatt MATH identifier
0619.32012

Subjects
Primary: 32F15
Secondary: 32A07: Special domains (Reinhardt, Hartogs, circular, tube) 32E25 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30]

Citation

Iordan, Andrei. Pseudoconvex domains with peak functions at each point of the boundary. Pacific J. Math. 133 (1988), no. 2, 277--287. https://projecteuclid.org/euclid.pjm/1102689473


Export citation

References

  • [1] E. Bedford and J. E. Fornaess, A construction of peak functions on weakly pseu- doconvex domains, Ann. of Math., 107 (1978), 555-568.
  • [2] T. Bloom, C peak functions for pseudoconvex domains of strict type, Duke Math. J., 45(1978), 133-147.
  • [3] J. Chaumat and A. M. Chollet, Caracterisation et propriets des ensembles lo- calementpics de A(D), Duke Math. J., 47 (1980), 763-787.
  • [4] J. E. Fornaess, Peak points on weakly pseudoconvex domains, Math. Ann., 227 (1977), 173-175.
  • [5] I. Graham, Boundary behavior of the Caratheodory and Kobayashi metrics on stronglypseudoconvexdomains in Cn withsmooth boundary,Trans. Amer.Math. So, 207(1975),219-240.
  • [6] R. C. Gunning and H. Rossi,Analytic Functions of Several Complex Variables, New-York: Prentice Hall, 1965._
  • [7] M. Hakim and N. Sibony, Frointiere de Shilov et spectre de A(D) pour lesdo- mains faiblement pseudoconvexes,C.R. Acad. Sci.,Paris, 281 (1975), 959-962.
  • [8] M. Hakim and N. Sibony, Quelquesconditionspour existencedefonctions pics dans desdomaines pseudoconvexes,Duke Math. J., 44 (1977), 399-406.
  • [9] F.R. Harvey and R. O. Wells, Jr., Zero-setsof non-negative strictlyplurisubhar- monicfunctions, Math. Ann., 201 (1973), 165-170.
  • [10] A. Iordan, Peak sets in weakly pseudoconvex domains, Math. Z., 188 (1985), 171-188.
  • [11] A. Iordan, Peak sets in pseudoconvex domains with isolated degeneracies, Math. Z., 188 (1985), 535-543.
  • [12] A. Iordan,Peaksets in pseudoconvex domains with the (NP) property, Math.Ann., 272(1985), 231-235.
  • [13] J. J. Kohn and L. Nirenberg, A pseudoconvex domain not admitting aholomor- phic support function, Math. Ann., 201 (1973), 265-268.
  • [14] S. G. Kranz, Function Theoryof Several Complex Variables, New York: Wiley and Sons, 1982.
  • [15] A. V. Noell, Properties of peak sets in weakly pseudoconvex boundaries in C2, Math. Z., 186(1984),117-123.
  • [16] A. V. Noell,Peakpoints in boundariesnot of finite type,Pacific J. Math., 123 (1986), 385-390.
  • [17] P. Pflug, Uberpolynomial Funktionen aufHolomorphiegebieten, Math. Z.,139 (1974), 133-139.
  • [18] H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math., 74(1961), 470-493.